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Abstract 

A key advantage of Autonomic Computing Systems will be the ability to manage 

according to business policies.  Implementing this ability is not a trivial problem as there 

is little similarity in the metrics used for measuring database performance and business 

performance. These translations can be simplified, however, by having a configuration 

model that reflects the business policies.  Economic models allow for a system that 

mirrors the types of policies used to define performance in a business. 

One such business policy comes from using Value Based Management [31], in 

which a manager is able to define the business units that are most important when it 

comes to allocation of capital resources. This concept can be applied to a Database 

Management System (DBMS) running multiple workloads corresponding to different 

business units.  Importance information can be utilized in making resource allocation 

decisions, such as allocating buffer space. 

In this dissertation, we utilize an economic model to address the buffer pool sizing 

problem in DBMSs.  We use this context to implement importance as a parameter for 

resource allocation.  We investigate a number of meanings for importance and identify 

how this additional information can best be used in the allocation of main memory. 
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Chapter 1 

Introduction 

1.1 Motivation 

Computing systems have become increasingly complex over the last few decades.  

This complexity is approaching a point where system administrators and highly skilled IT 

professionals, let alone managers with corporate policy decision making approval, are 

unable to comprehend all aspects of the system’s day to day performance [19].  This 

crisis has been brought to the attention of the computing world through initiatives such as 

IBM’s Autonomic Computing.  IBM put forth the challenge for all elements of 

computing, hardware and software, to become self managed in a method reminiscent of 

the human autonomic system [17].  These Autonomic Computing systems should be self-

configuring, self-tuning, self-protecting, and self-healing. The goal is to enable the 

system to be managed more directly by business policies.  This will allow for those with 

decision making authority to have direct control over the computing systems that are a 

central part of their business [22]. 

In particular, Database Management Systems (DBMSs) have become a core 

component in most organization’s computing systems.  DBMSs are so complex that 

many require specialized database administrators (DBAs) to be kept on staff for the day 

to day management of the system. According to the US Department of Labor, in 2002, 

there were 110,000 DBAs in the United States alone [8].  One of their key roles is tuning 

the DBMS so that the system can meet the required IT goals, such as throughput and 
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response time goals.  Determining these IT goals from the typical high-level business 

policies that govern most organizations is no easy task. 

Most management policies are not written in terms of response time and 

throughput, but instead they are concerned with measures like revenue and return on 

investment (ROI).  Additionally, database administrators are typically not involved in 

corporate policy decision making and must attempt to translate business policy into low-

level technical requirements for the DBMS.  This is a non-trivial exercise as there is little 

similarity in the metrics used for measuring database performance and business 

performance [2].   

 

1.2 Problem 

IBM has proposed a 5 level progression in the development of Autonomic 

systems (Figure 1.1) [18].  This progression serves as a guide to developers and details 

the milestone steps required to attain Autonomic capabilities.  Computing at the Basic 

level offers no help to IT administrators who must obtain system data through 

independent sources, collate, analyze and decide the proper system administration tasks 

on their own.  The Managed level introduces system management tools that simplify the 

acquisition of system data and provide consolidated reports to ease the analysis and 

execution of administrative tasks.  Computing systems at the Predictive level introduce 

system initiated guidance for IT administrators.  These systems are able to self-monitor 

and suggest future courses of action.  However, the IT administrator is still responsible 

for initiating the actions.  The final two levels involve systems that are not only self-

monitoring, but self-managing as well. 
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Figure 1.1:  IBM’s 5 Level Autonomic Computing Progression [18] 

 

Much of the work that has been accomplished so far within Autonomic 

Computing fits into the Adaptive level, which involves creating systems that manage 

themselves with respect to some IT-oriented performance goal [11][34][36].  Further 

research is concerned with trying to move towards the Autonomic level, which involves 

implementing policies that mirror those used by business organizations.  This allows for 

easy to understand system management policies that do not require specialized IT 

knowledge.  For example, a high-level business policy may describe the working hours of 
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the organization, such as 9-5, Monday to Friday or 24/7.  The difficulty comes in the 

implementation and what this policy means to the system.  It is a non-trivial exercise to 

translate high-level policies into low level implementations.  For example, if a policy 

specifying business hours is defined, this may signal that the workload after hours is 

significantly different and, thus, the system should be tuned accordingly at closing time.  

This requires that the system be able to detect and characterize the new workload, 

determine how the system tuning parameters need to be changed, and finally be able to 

effect the change. 

One type of policy that has a great deal of impact on the way in which the DBA 

makes decisions is the “importance policy”.  This type of policy allows managers to 

differentiate the importance of work being done on the DBMS.  This becomes more 

critical as businesses consolidate workloads of different business units onto a single 

DBMS.  The importance policy endows the DBA with additional information that can be 

used in making configuration decisions.  As multiple workloads are consolidated to a 

single DBMS, inevitably, these workloads will begin to compete for physical resources, 

such as memory and CPU.  The importance policy indicates how resources should be 

divided among competing workloads. 

The buffer pool, for example, is an area of main memory reserved for buffering 

data to reduce disk accesses and is a critical factor in database performance [4].  As disk 

accesses are significantly slower than memory accesses, the DBA wants to retain as much 

data in the buffer pool as possible.  This must be accomplished while balancing the need 

for additional main memory for other system needs, such as working memory for sorts 

and table joins.  Determining the size of the buffer pool is typically done by making an 
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initial estimate based on workload and database characterizations and is then refined by 

monitoring a number of buffer pool parameters, most notably buffer hit rate.  Buffer hit 

rate is a key metric in measuring the success of a buffer sizing as it reflects the number of 

times a page of data is found in memory as opposed to needing to be retrieved from disk.  

This problem is further complicated when multiple buffer pools are involved.  There has 

been much research done in attempting to automate this process [28]. 

When confronted with a finite resource that is not sufficient to meet the demands 

of all workload classes, the DBA must make a decision to compromise performance for 

some work.  The additional importance information can assist in making a proper 

decision on how to make this compromise.  However, determining the proper sizes of 

each buffer pool and taking into account multiple importance levels is a complex problem. 

A key problem in implementing an importance policy is determining what it 

means to say that one workload class is more important than another.  When utilized to 

make tuning decisions, different interpretations of importance are possible.  For example, 

a more important class gets access to the resources it needs before a less important class; 

an important class can hold resources not in use in anticipation of work to come and an 

important class can appropriate resources from less important classes when needed.  

Additionally, the degree to which one class is more important than another affects tuning 

decisions and is another problem that needs to be addressed when implementing an 

importance policy. 

One technique that has been used to address this disparity between high-level and 

low-level metrics is to introduce an economic model into the low-level system.  
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Economic models have been used in a number of resource allocation problems in 

computing with great success [9][12][15][26][29][35].   

An economic model for system tuning typically involves a pricing system for 

resources. The rules of the system can vary to create the desired system behaviour.  Since 

the model has an inherent sense of pricing and cost, business policies that express these 

ideas can be more easily implemented.  The models are easily understood by many of the 

business policy makers and do not require the specialized IT knowledge that other 

models require.  This eases the translation as the low-level system now functions in a 

similar manner as many high-level business policies.  A system can therefore be managed 

directly according to business policies, which is the goal of Autonomic Computing. 

 

1.3 Research Statement 

The goal of this research is to investigate how a Workload Class Importance 

business policy may be implemented in an Autonomic Database Management System.  

The challenge in implementing this policy comes from translating this importance 

information into the DBMS.  To ease this translation, we utilize an economic model for 

resource allocation.  Specifically, we investigate this policy in the context of the buffer 

pool sizing problem. 

We create an economic model representation of the buffer pool sizing problem 

and implement the model as an offline simulation.  The model is utilized to investigate a 

number of possible meanings for importance and identify how this information can be 

used to allocate buffer pool memory between competing workloads.  These various 



www.manaraa.com

7 

importance policies are implemented by adjusting various parameters and rules in the 

model.   

We present experimental results where we look at a three class workload in which 

the classes are competing for buffer pool memory.  We use the simulation to make 

memory allocation decisions for these workloads according to their level of importance 

and estimated need for buffer pool space. 

The rationale for this project is that it helps make the case for the move towards 

“business policy based” Autonomic tuning.  Importance policies are one of the most 

common examples of a business policy that could be used for tuning.  With level 5 of 

IBM’s Autonomic Progression explicitly mentioning “business policy” as the driving 

force behind decisions, this is a key step. 

 

1.4 Thesis Organization 

The remainder of the dissertation is organized as follows. Chapter 2 outlines the 

related research conducted in the area of autonomic computing, resource allocation, 

economic models, and database workload priority. Chapter 3 describes the economic 

model used for allocation of resources.  Chapter 4 describes the Workload Class 

Importance Policy and its syntax and semantics. Chapter 5 describes the simulator and 

presents a set of experiments to verify our approach.  The thesis is summarized and future 

work is discussed in Chapter 6. 



www.manaraa.com

8 

Chapter 2 

Background and Related Work 

This research draws from a number of areas in order to address the problem of 

implementing business policy based self-tuning in a Database Management System.  This 

chapter provides some background information and references previous research in each 

of the four main areas addressed by this work.  In Section 2.1, we present some previous 

work in the area of developing Autonomic Database Management Systems, while 

addressing how our work looks to further the progress towards Autonomic Computing.  

Section 2.2 looks at work in the field of Goal-Oriented Resource Allocation.  It presents 

the problem of buffer pool sizing and some previously proposed solutions.  Section 2.3 

discusses some of the work that has been done using economic models in computing.  

Finally, Section 2.4 examines the issue of implementing Priority in computing systems. 

 

2.1 Autonomic Database Management Systems 

Since 2001, when IBM introduced their Autonomic Computing Manifesto [17], 

there has been great interest in Autonomic Computing within the scientific community.  

As computational power has become ever present and cheaper, software designers have 

harnessed this power to create ever more feature rich, yet complex, environments.  

Additionally, IBM pointed out that the new difficulty in managing computing systems is 

that they no longer involve single systems or software environments [22].  Computing 
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systems are increasingly including a number of heterogeneous systems and software 

environments, connected both locally and over the Internet.   

These monolithic computing environments are approaching the limits of human 

capability to understand and manage effectively.  Not only is there a crisis of 

understanding, but there is also a huge problem with the amount of available skilled IT 

staff to manage these systems.  Some estimates put the required number of IT staff 

required to maintain computer systems globally as high as 200 million [8]. 

The only viable solution to this crisis requires computing systems to manage 

themselves, that is, to take high-level objectives from administrators and handle the low-

level maintenance themselves.  Autonomic Computing is a term coined by IBM to 

describe technologies for computing systems that are able to self-configure, self-optimize, 

self-heal, and self-protect.  These are systems that are able to seamlessly install and 

configure new hardware and software, strive to continually improve their own 

performance, diagnose and repair software and hardware problems, and detect and 

protect against malicious attacks [22].  Great strides have been made on a number of 

issues key to developing these types of systems.  Research on self-tuning DBMSs has 

included such topics as index selection [30], materialized view selection [1] and memory 

management [7][36]. 
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Figure 2.1: Highlighting the difference between Adaptive and Autonomic computing [16] 

 

Referring to Ganek’s and Corbi’s evolution towards Autonomic operation (Figure 

2.1) [16], however, much of this work fits into the Adaptive computing level.  The key 

feature that differentiates Autonomic computing from Adaptive computing is the ability 

to manage according to business policies.  Whereas the goals used in much previous 

work involve IT metrics such as response time or throughput [7][28], there is little work 

that directly addresses the issue of managing IT systems according to high-level business 

policies [2].  The ability to be managed according to high-level business policies would 

allow those business executives who typically form business policy to have more direct 

control over computing systems as opposed to requiring IT workers to translate the 

business objectives into IT objectives. 

Our work is directly concerned with the implementation of business policies in an 

attempt to achieve the Autonomic computing level.  We augment an automated resource 

allocation method to implement the concept of priority to reflect an importance policy 

based on Value Based Management.  
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2.2 Goal-Oriented Multi-Class Resource Allocation 

Resource allocation is a key challenge in computing.  How to determine 

allocations of resources to various applications on a computing system can be 

accomplished in a number of ways.  Historically, much of the work done with regards to 

DBMS resource allocation involved optimizing system wide performance, while more 

recent work separates the workload into classes that share some commonality [5]. 

Traditionally, database workloads are categorized into one of two categories: 

Online Transaction Processing (OLTP) or Decision Support Systems (DSS).  DBAs 

would use tuning strategies specific to how similar their workload was to an OLTP or 

DSS workload.  However, as more enterprises consolidate their databases to a single 

DBMS, the resulting workload becomes a mix of the two types [6].  The combination of 

short running transactions and long running decision support queries creates a workload 

whose resource consumption and execution time is hard to predict [6].  Thus, many 

solutions involve segregating portions of the workload and allocating resources to each 

class as the resource requirements for a class can be better understood.  Instead of trying 

to optimize overall system allocations, a DBA can optimize the allocation of each class 

and achieve an overall system optimization [7]. 

One of the most important resources in determining system performance is 

memory management [4].  There are a number of parameters that a DBA must tune when 

optimizing memory management, but one of the most common is determining the size of 

the buffer area.  The buffer area is a portion of memory that the DBMS reserves for 

caching pages read from disk.  By having the appropriate pages in the buffer area, the 

DBMS can greatly reduce the data access time for executing queries.  The easiest way to 
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ensure that the proper pages are in the buffer area is to have a very large buffer area so 

that an increased number of disk pages are kept in memory.  However, main memory is a 

finite resource and allocating more memory for the buffer area results in reduced space 

for other DBMS needs such as working space for sorting and joining data. 

Another method to optimize the buffer area is to recognize that different database 

objects are accessed according to different patterns.  For example, indexes and data tables 

that are read sequentially are typically accessed in different patterns [36].  One way to 

deal with this is to logically separate the buffer area into separate buffer pools where page 

replacement is local to each buffer pool, and assign database objects with similar access 

patterns to the same buffer pool. 

There are a number of rules-of-thumb that DBAs traditionally utilize in defining 

buffer pools [36].   These rules-of-thumb are used by DBAs to address two problems, the 

buffer pool configuration problem and the buffer pool sizing problem.  The buffer pool 

configuration problem involves determining how many buffer pools are necessary and 

which database objects belong in each.  For this work, we look at the buffer pool sizing 

problem. The buffer pool sizing problem involves finding the optimal allocations of 

memory for a set of buffer pools so that the best possible database performance is 

achieved [28].  However, previous work examines this problem from the perspective of 

the database objects as opposed to multi-class workloads with separate buffer pools 

assigned to workload classes. 

This work examines the buffer pool sizing problem in the case where multiple 

workload classes run concurrently on the same DBMS, with a separate buffer pool 

assigned to each class.  Our research further builds upon the class model by introducing 
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importance information into the resource allocation problem.  As opposed to attempting 

to optimize each class to an equal degree, we use class importance to give priority to 

optimizing some classes more than others. 

 

2.3 Economies for Computer Resource Allocation 

Human economies are designed to handle the large scale distribution of a near 

infinite number of goods among just as many agents.  Their scale far exceeds what is 

likely to be encountered in dealing with resource allocation in a computing system.  

However, the benefit for computing is that, along with developing over centuries, they 

have been studied just as long.  There is a wealth of knowledge, theories, equations, 

algorithms, and models that have been used to explain the actions within human 

economies that can be reused or adapted to resource allocation in computing. 

Many researchers have found a number of key tools and benefits that economic 

models can bring to the resource allocation problem in computing systems [12][15][26].  

These include utility functions to describe consumer allocation preferences in a concise 

mathematical formula [32], decentralization through the use of multiple brokers and 

agents, and largely scalable resource allocation solutions [15]. 

 Utility, as used in economics, describes an amount of happiness or satisfaction 

gained from consumption of an allocation of a commodity.  A utility function is a 

mapping of this satisfaction to various allocations of the commodity.  In terms of 

computing resources, utility can be thought of as a measure of usefulness.  When an 

agent is given an allocation of a resource, such as disk space, main memory, or CPU time, 

there is a certain amount of usefulness that is obtained.  A utility function (Figure 2.2) 
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would then provide a mapping between all allocations of that resource and the usefulness 

the agent would achieve.   

 

 

Figure 2.2: Sample utility curve 

 

These functions can usually be expressed as mathematical formulas and 

combining these functions into multi-dimensional utility functions for a number of 

commodities allows one to find an allocation of a number of resources to best satisfy an 

agent [32]. Even with this very understandable application to computer resource 

allocation problems, the study of the practical applications of utility functions in 

computing is still fairly new [32].  Our work examines a utility function used by a 

database workload class to determine the usefulness of an allocation of buffer pool space. 

Economic models typically contain suppliers and consumers that exchange goods.  

There are many different ways to implement this, with each implementation providing 

certain features to accomplish a specific goal [9].  Using wealth and auctions creates a 

transparent decision making process for allocations [26] and, if certain conditions are met 

provide an efficient convergence to a Pareto optimal resource allocation [35].  Pareto 
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optimality implies that no individual’s utility can be improved without diminishing the 

utility of others.  This is a very desirable quality for the solutions provided by an 

economic model. 

Through the use of brokers and agents, decentralization of the resource allocation 

decision is achieved.  Brokers and agents need not have any knowledge of the overall 

system state.  Brokers look only to maximize their profit for selling resources, while 

consumer agents are only concerned with maximizing their own utility [15].  

Additionally, if the utility functions are monotone, smooth, and convex, this competitive 

system will lead to a Pareto optimal solution.   

We implement a basic economic model in our work to represent resource 

allocation in a Database Management System.  We use this simulator as a solution to the 

buffer pool sizing problem.  We then utilize the model to implement an importance 

policy and view its effects on the buffer pool allocations suggested by the model. 

 

2.4 Business Policy Management and Priority 

Although researchers have been pursuing Autonomic Computing for a number of 

years, there is very little research that examines self-tuning systems guided by business 

policies [2].  Most research is concerned with optimizing traditional IT metrics.  However, 

as stated previously, it is very difficult to directly translate many business policies into 

traditional IT measures of performance.  By using an economic model for resource 

allocation, we attempt to bridge the gap between IT measures and business metrics such 

as profit and return on investment. 
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One business policy of particular interest is that of an importance policy.  Such a 

policy would be useful in organizations utilizing management ideas such as Strategic 

Business Unit (SBU) Valuation that comes from Value Based Management [31].  By 

determining a valuation for an SBU, managers utilizing tools such as the McKinsey 

matrix [33] are able to determine the appropriate SBU to which new capital should be 

assigned.  In a situation where computing infrastructure is shared among these business 

units, one can readily see how an importance policy could translate to some sort of 

priority for computing resources.  We attempt to implement such an importance policy 

within our economic model framework. 

Trying to incorporate importance/priority information into the resource allocation 

decision has been a topic of research for sometime now.  In relation to DBMSs, much of 

the work on using priority information has focused on scheduling queries [10].  Previous 

research on using priority to manage physical resources in a DBMS has attempted to 

transfer ideas of priority from other computing resources such as CPU scheduling and 

buffer management [10].  However, there are a number of issues not addressed, such as 

the degree of difference in importance between various levels of priority and what 

priority should mean in resource allocation.  

Recent work in utilizing priority information has focused on “real-time database 

systems” (RDBMS) [13].  Priority information is typically used as additional information 

for making different decisions, such as CPU scheduling or concurrency conflict 

resolution.  However, RDBMSs are typically interested in allocating resources for 

individual queries to meet specific deadlines as opposed to adjusting for class-based 
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performance goals.  Additionally, most priority schemes are based on adjusting schedules 

through some sort of admission control policy. 

In our work, we look at the implementation of importance in a DBMS in the 

context of the buffer pool sizing problem.  We examine a number of definitions of what 

importance information should mean in terms of resource allocation.  We also experiment 

to determine the degree to which a high-priority class should be more important than a 

low-priority class.  Using an economic model, this is accomplished through simple rule 

changes such as how wealth is allocated and how auctions are conducted. 
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Chapter 3 

Economic Model 

Economic models used for resource allocation vary significantly from 

implementation to implementation, usually based on differing goals.  They range from 

simple models designed for low overhead costs to much more sophisticated models 

designed to emulate an intelligent system [9][15][26][29][35]. 

All economic models for resource allocation consist of four basic elements, 

namely a supplier, consumers, resources and a mechanism for trade, as shown in Figure 

3.1.  Typically, economic models are concerned with the case where there are a limited 

number of suppliers and many consumers.  This competitive model adapts itself well to 

resource allocation problems where resources are limited.  In every economic model 

resources are supplied to consumers through some sort of trading mechanism.  Most often, 

this mechanism involves representative money used by consumers to obtain the supplied 

resource [12].  Using auctions as the mechanism for trade provides a well understood 

decision making process with easy to trace results. 
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Figure 3.1: Components of an economic model 

3.1 Our Economic Model 

For the purposes of this dissertation, we develop an economic model to represent 

the buffer pool sizing problem.  We utilize an instance of the model consisting of three 

consumer agents and a single broker.  The resource being supplied is a finite amount of 

buffer pool memory pages.  The broker is responsible for allocating buffer pool space to 

the consumer agents.  The agents represent three OLTP workloads running 

simultaneously on the DBMS.  The consumer agents are each assigned wealth based on 

the estimate of the work they must complete.  The resource broker conducts auctions of 

memory page blocks to sell them to the consumer agents.  The consumer agents each 
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have an associated utility function used to determine the maximum amount of wealth 

they are willing to spend for the block of memory pages currently for auction.  The 

agents submit this value as a sealed-bid to the resource broker who selects the highest bid 

as the winner and assigns the resource accordingly.  This continues until all resources 

have been allocated or no consumer agent desires more resources. 

 

 

Figure 3.2: Economic model used for simulation 
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This economic model in Figure 3.2 represents a slightly different version of the 

buffer pool sizing problem.  Typically, the buffer pools are associated with the database 

itself, not the user workloads.  The various database objects, such as tables and indices 

are divided into buffer pools depending on access patterns and sizes and appropriate 

buffer pool sizes must be determined for these sets of objects.  Our model, however, takes 

a more user-centric approach.  We assume that each class of work or workload on the 

DBMS is assigned its own amount of buffer pool space.  Currently, an object to buffer 

pool mapping is a many-to-one relationship (a buffer pool may contain many objects 

while an object may only be contained in a single buffer pool) [36].  With a move 

towards a service oriented architecture that involves the DBMS being used by various 

users as a service, being able to define an amount of buffer memory for each user will be 

useful.  Thus, we use this alternative model of the buffer pool sizing problem to 

determine the appropriate amount of buffer pool memory for each consumer class agent. 

This basic economic model is used for evaluating the appropriateness of an 

economic model as a solution for the buffer pool sizing problem.  The minimal feature set 

of this model allows for implementing the importance policies desired, while allowing 

transparent decisions that can easily be interpreted [35]. 
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3.2 Class Agents 

For the purposes of this work, a workload class is a subset of the workload 

running on a DBMS that shares some user-defined commonality.  A class could be 

defined as all work originating from a specific user id, such as that of a CEO, or it could 

be defined based on the type of work it represents, such as after hours reporting jobs.  

These classes of work are defined by users so that they can receive some sort of 

differentiated treatment.  In the context of this model, classes are defined according to 

their importance level; all work in a given class has the same level of importance.  In our 

economic model, we use three example classes.  Each of these classes has an associated 

workload that runs on the DBMS. 

Consumer agents are defined and represent each class running on the DBMS in 

the model.  The agents are assigned an amount of wealth based on an estimate of the 

amount of work they are representing.  The wealth of a class agent, in this economic 

model, is a metaphor for monetary currency.  This estimate is obtained using the 

estimated number of I/O operations for each query as given by the DB2 EXPLAIN utility. 

For a workload W that contains n queries qi per resource allocation interval, each with an 

I/O estimate est(qi), the initial amount of wealth assigned to the class agent c would be: 

∑
=

=
n

i
iqestcWealth

1

)()(    Equation 3.1 

The agent uses this wealth to “purchase” the resources it needs to complete the work for 

which it is responsible.  

These agents are also given the ability to evaluate the utility of a resource 

allocation using an assigned utility function.  They use the marginal utility (the difference 



www.manaraa.com

23 

in utility between two allocations) calculated using the utility function to determine their 

maximum bid.  The maximum bid is the marginal utility multiplied by the agent’s current 

wealth.  Thus, if a class agent c has a current resource allocation of x buffer pool pages 

and y additional pages were available for bid, the bid submitted by class agent c, Bid(c), 

would be: 

)())()(()( cWealthxUtilityyxUtilitycBid ×−+=       Equation 3.2 

This provides reasonable bids of a percentage of their wealth that matches the estimated 

percentage increase in performance.  For example, if a class agent calculated that winning 

the current auction would provide a 10% increase in performance, the agent would be 

willing to spend 10% of its wealth to purchase that resource. 

 

3.2.1 Utility Function 

The class agents create a preference curve for their designated resource based on 

the workload queued to be completed.  In this economic model, this utility curve is a 

representation of the usefulness of an allocation of buffer pool memory.  As the key 

metric in evaluating buffer pool performance is typically hit rate, we use a hit rate 

estimation curve as the utility function for these class agents.  This allows us to use the 

marginal increase in hit rate as the marginal utility for a given allocation of buffer pool 

memory. 

We can also use the utility function in reverse.  This allows us to find an 

estimated buffer pool size to achieve a desired hit rate.  We use this functionality to pre-

assign buffer pool space to guarantee a minimum level of performance. 
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The marginal utility is the difference in utility between two different allocations.  

In this economic model, since the utility functions represent the relationship between 

buffer pool size and buffer pool hit rate, the utility will always increase with an increase 

in buffer pool size.  However, due to the diminishing returns of buffer pool size increases 

on hit rate, the marginal utility will always decrease.  This will provide the desired 

behaviour in the model so that class agents will spend on resources to a point where the 

marginal benefit does not outweigh the cost. 

This monotonic decreasing utility curve in a competitive model will also allow us 

to achieve a Pareto-optimal allocation as described in Chapter 2.3 

 

3.2.2 Belady’s Equation 

For our economic model, we have chosen to use Belady’s equation [3] as a hit 

rate estimator.  This equation provides a hit rate estimate for a given allocation by using 

only two sample points.  These sample points consist of a buffer pool size and hit rate 

pair.  Thus, by running the workload with two different buffer pool sizes and measuring 

the hit rate, we can use Belady’s equation to estimate the hit rate of alternative sizes.  

Furthermore, if we assume that the buffer pool access pattern for a given workload does 

not vary over time, we can use two trial samples, early in a workload’s execution, to 

provide us with a hit rate estimator useful for dynamic resizing of the buffer pool over the 

course of the remaining workload.  If a workload class is defined by something such as a 

business application using a set of predefined queries or an order entry department, this 

assumption is valid. 
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For any buffer pool of size S, Belady’s equation allows us to estimate the hit rate 

HR(S) as: 

bSaSHR ×−= 1)(     Equation 3.3 

 The constants a and b are calculated using the sample points.  Once HR(S1) and 

HR(S2) have been collected for buffer pool sizes S1 and S2, we can use the following 

equations to solve for a and b: 

)ln()ln(
))(1ln())(1ln(
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=    Equation 3.4 
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SHRa ×

−
=     Equation 3.5 

 Once we have a and b for a given workload, we can solve Belady’s equation and 

use it as a hit rate estimator.  This provides a curve similar to what is seen in Figure 3.3. 

Sample Belady's Equation Curve
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Figure 3.3: Sample curve formed by Belady’s equation 
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Since hit rate is typically the most important factor in determining an appropriate 

buffer pool size, we use the hit rate as a measure of utility.  For example, if increasing the 

buffer pool by 100 pages of memory would increase the hit rate from 65% to 70%, we 

would state that the 100 pages of memory had a marginal utility of 5%. 

We can also use the inverse of Belady’s equation to estimate the necessary buffer 

pool size to meet a target hit rate.  The inverse function to solve for size S given HR(S) is: 

b

a
SHRS −−

= ))(1(    Equation 3.6 

 These simple equations provide the class agents with an efficient way to estimate 

their utility for a given allocation of buffer pool memory and determine their maximum 

bids accordingly. 

 

3.3 Resource Broker  

The broker is responsible for administering the auctions.  The auctions used in 

this model are sealed-bid auctions, where agents submit their maximum bid and the 

broker selects the highest bid as the winner.  As an agent wins auctions, it gains resources 

but loses wealth. They are, therefore, less likely to bid on additional resources as they 

give up wealth  and thus allow other classes with less wealth and resources the chance to 

win resources.  The main memory is divided into blocks of memory pages.  Agents make 

bids based on their utility function curves until they have sufficient resources, insufficient 

wealth, or all resources have been claimed.  The specific protocol for how the auctions 
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function affects the method in which resources are allocated.  We use this to implement 

different definitions of importance, which is discussed in the next chapter. 

Auctions are held at predefined intervals, where class agents bid on the resources 

available using their assigned wealth.  The resource broker in this economic model 

simply coordinates these auctions.  However, in more complex models, the brokers can, 

in turn, try to maximize their own desired resource, wealth.  These brokers measure 

demand and try to maximize the price at which they sell resources.  In our basic model, 

though, the way in which the resource broker maximizes profit is by selling all available 

resources in each auction period. 

The process that the broker follows in allocating resources is as follows (Figure 

3.4): 

While unallocated pages > 0 and number of bidders > 0{ 
Determine number of memory pages, y, for auction{ 

  If unallocated memory pages > pageBlockSize 
   y = pageBlockSize 
  Else y = unallocated memory pages} 

Solicit bids from class agents{ 
  For each class agent 
   Get bid(c)} 

If number of bidders > 0 { 
Determine max bid 

   Allocate y to highest bidder 
   Charge highest bidder bid(c) for allocation 

Unallocated pages -= y} 
} 

Figure 3.4: Memory Broker auction algorithm pseudo code 

 

This process is repeated at the beginning of each interval to determine the buffer pool 

allocations to be used for the interval.   
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3.4 Economic Model Simulator 

As implementing an economic model for resource allocation within the IBM DB2 

Universal Database (DB2 UDB) [21] engine is outside the scope of this work, we have 

implemented a simulator to make the resource allocation decisions.  The simulator is an 

implementation of the economic model representing the buffer pool sizing problem.  The 

simulator was created using the Java programming system.  The simulator is 

implemented as shown in the UML diagram presented in Figure 3.4.  The Simulator class 

contains the main method and controls the simulation. 
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Figure 3.5:  UML description of Economic Model Simulator classes 
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As inputs, the Simulator takes three SQL workload script files.  These workload 

files are augmented with the estimated runtime and the estimated number of I/O 

operations for each query as obtained using the DB2 EXPLPAIN utility.  As output, the 

Simulator provides a list of buffer pool sizes for each workload at each specified interval.  

For the purposes of this work, we also output the cost for each class to purchase the 

allocated resources along with the amount of wealth they retained. 

The Simulator creates a ClassAgent object for each workload provided.  It also 

initializes a Broker object to act as the memory broker.  The ClassAgents determine the 

queries that are executed in the first interval as specified by the Simulator.  Once they 

have determined the queries that are applicable, they calculate the sum of the estimated 

I/O operations and report this to the Simulator.  The Simulator uses this value to 

determine the wealth assigned to each ClassAgent for the interval.  Once wealth is 

assigned to all ClassAgents, the Simulator allows the Broker to begin the allocation 

process.  The broker determines the number of memory pages for auction and elicits bids 

from each of the ClassAgents.  The Broker assigns the memory pages to the ClassAgent 

that submits the highest-bid and charges them for the amount of the bid.  This auction 

process ends when there are no remaining memory pages, the ClassAgents have no 

remaining wealth, or the ClassAgents to not desire any more memory pages.  At this 

point, the Broker submits a Transaction containing the AuctionResult to the Simulator 

and the Simulator advances to the next interval.  Once all intervals are completed, the 

Simulator outputs the resulting schedule of allocations.  The parameters used for 

adjusting the simulation of the economic model are shown in Table 3.1. 
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Name Type Description 
interval int Specifies the number of queries per interval 
memPages int Specifies the total number of memory pages  

for the broker to allocate 
pageBlockSize int Specifies the number of memory pages available 

Per auction 
class1A double The calculated A value for class 1 utility function
class1B double The calculated B value for class 1 utility function
class2A double The calculated A value for class 2 utility function
class2B double The calculated B value for class 2 utility function
class3A double The calculated A value for class 3 utility function
class3B double The calculated B value for class 3 utility function

Table 3.1: Economic model simulator parameters. 

 

For this work, the values for a and b needed to solve Belady’s equation (used as 

the utility function) were pre-calculated by running the workload with different buffer 

pool sizes as we had a pre-specified workload script.  However, this could easily be done 

online by adjusting the buffer pool size for two time intervals and recording the results, or 

offline by using a number of very accurate offline hit rate estimators that analyze the 

workload [28]. 

The remaining parameters are used for implementing the various possible 

Workload Class Importance Policies described in the next chapter.  They are shown in 

Table 3.2. 
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Name Type Description 
preemptive boolean Specifies whether the importance scheme is  

Preemptive or non-preemptive 
exemptImportant boolean Specifies whether the Exempt Important  

importance scheme is used 
aging boolean Specifies whether priority aging is used 
minHitrate double A parameter used for pre-allocation in the 

non-preemptive importance schemes 
exemptImportantHitrate double A parameter used for pre-allocation in the 

Exempt Important scheme 
importantMultiplier double Wealth multiplier for High Importance classes 
normalMultiplier double Wealth multiplier for Normal Importance classes
bestEffortMultiplier double Wealth multiplier for Best Effort classes 

Table 3.2: Workload Class Importance Policy parameters 

 

In Chapter 4, these parameters, their effect on the execution of the simulation, and 

their implementation details are described.  The settings for these parameters for the 

experiments are presented in Chapter 5. 

 

3.5 Model Overhead Analysis 

 In this section, we discuss the impact this model would have when implemented 

in a modern DBMS.  As implementation of this model into IBM’s DB2/UDB is beyond 

the scope of this work, experimentation to determine the overhead introduced into the 

system is not possible.  However, an examination of the complexity of the algorithm 

provides some indication. 

The auction algorithm presented, the sealed-bid auction, is one of least complex 

trade mechanisms available.  For a specified interval, Ik, the Broker initiates m auctions 

where m = memPages/pageBlockSize.  The Broker must then obtain bids from n 

ClassAgents.  To compute these bids, each ClassAgent must calculate the marginal utility 
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for the currently available memory pages using Belady’s equation.  We denote the time 

taken for this calculation as Tutil.  Thus, the equation to estimate overhead introduced into 

the system is in Equation 3.5.  

∑
=

××
k

I
utilTnm

1
     Equation 3.7 

The number of ClassAgents, representing concurrent workloads on the DBMS, 

should never reach a very large value for n so the overhead of the auction mechanism is 

mostly dependant on m.  We found however, due to the diminishing returns nature of 

buffer pool hit rates, having a small pageBlockSize does not benefit the model as the 

marginal utility of only a few pages of memory is typically very low.  Thus, the 

granularity of the resource allocation process does not benefit from being too fine and m 

should be a small value as well.  Finally, since the utility function is based on a single 

equation, the time to calculate the value of marginal utility, Tutil, will be small.  Thus, this 

model, used for a single resource and utilizing Belady’s equation for a utility function 

will introduce little overhead to the system.  However, if the model were expanded to 

multiple resources, the ClassAgent calculations would be more intensive and the number 

of resource auctions would increase.   

The most significant overhead will come from the frequency at which this 

allocation takes place.  At each interval, the model will execute m resource auctions and n 

resource reallocations.  However, the granularity of the model determines its 

responsiveness as an autonomic system.  We use a constant interval that is fairly course-

grained (10,000 queries).  A finer-grained interval would allow the system to adapt to 

changing demands more quickly at the cost of increasing the overhead. 
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Currently, the model runs very quickly compared to the total execution time of the 

workloads, but without being able to implement this in a DBMS, we are unable to 

accurately characterize the impact on the system.  This model uses a minimal amount of 

statistics from the DBMS and uses a minimal set of economic functionality.  Further 

research will need to be conducted to determine how an expanded economic model, using 

multiple resources and allowing consumers to choose between resources, would affect the 

overhead for the DBMS. 
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Chapter 4 

Workload Class Importance Policy 

This research addresses two key problems in implementing an “importance 

policy” in a self-tuning Database Management System.  These two key problems are the 

degree of importance that a high-importance class has compared to a low-importance 

class and what being an important class means in terms of how resources are allocated, 

definition of importance.  In this section, we describe the questions these two problems 

raise and our proposed solutions.  We define possible scenarios for solutions and, in the 

next section, provide experimental data to evaluate the best solutions. 

 

4.1 Importance Policy 

One important aspect of Value Based Management is the ability to quantify the 

value of business units.  Using tools such as the McKinsey or GE matrix [31], an 

enterprise is able to measure the value of various strategic business units.  This valuation 

can be used to, for example, determine where newly acquired capital should be utilized or, 

in other words, which are the most important business units in terms of resource 

allocation.  This directly relates to the resource model developed in the previous chapter.  

In the economic model previously discussed, multiple workload classes are competing for 

limited resources, just as business units compete for capital in an enterprise.  Using the 

valuation ideas of Value Based Management, one could determine importance labels to 

be applied to the various workload classes in the economic model in the case where the 
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class agents each represent a business unit.  A combination of these labels defines an 

importance policy for the system. 

The importance policy examined in this work involves assigning one of three 

importance levels to each workload class running on the DBMS.  We use the labels 

“High Importance”, “Normal Importance”, and “Best Effort”. 

A class that is “High Importance” should demonstrate some priority over classes 

that have “Normal Importance” or “Best Effort” importance.  In a consolidated enterprise 

system, this “High Importance” label could, for example, be applied to a class of work 

representing an OLTP-like order entry department as this work is directly revenue 

generating or a class of work corresponding to queries entered by the company CEO and 

considered most important.  The “Normal Importance” label would likely apply to all 

other business related workloads such as an HR department that will run reports that they 

need during business hours, but have a lower priority than business units directly 

affecting revenue.  Finally, the “Best Effort” label would be applied to classes of 

transactions that do not have any strict deadline, such as background DBMS maintenance 

work or after hours reporting queries. 

These three levels, we believe, provide a reasonable scenario for implementing 

importance in the DBMS.  These three labels allow, in addition to normal workloads, a 

way to both raise and lower the importance of workloads on the DBMS.  A discrete 

labeling system is also preferential to a continuous value describing importance as it is 

much easier to make decisions choosing the appropriate level for a class from a small 

number of well defined importance levels.  A larger enterprise may require more levels of 

discretion for various classes of work.  Additional levels of importance could be added to 
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the system, however, some experimentation to determine their degree of importance, as 

defined below, would be necessary. 

 

Figure 4.1: Value Based Management Value Added Cycle 

Using this Workload Class Importance Policy to tune the DBMS according to the 

importance of the various business units can help organizations to increase their value 

according to principles of Value Based Management [31].  By improving the 

performance of important business units, the enterprise will improve the user satisfaction 

for users of the important workloads without additional investment in resources.  This 

will help to further increase the value of these strategic business units.  This leads to the 

cycle shown in figure 4.1. 

Using Value Based Management tools, an enterprise is able to determine 

importance labels for different workloads on the DBMS.  The DBMS will tune resources 

according to these labels using the economic model presented in chapter 3.  This will 

result in the important workload classes being able achieve an increase in performance, 
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leading to increased user satisfaction.  Increasing user satisfaction is one way in which an 

enterprise can add value [31].  This increase in value is then taken into account when re-

evaluating the value of strategic business units.  This iterative cycle will help enterprises 

refine their critical IT operations without the need for specifying low-level system 

requirements. 

 

4.2 Degree of Importance 

A key problem in implementing different levels of importance is how to 

differentiate between the levels.  This involves determining how much more important 

one level is than another.  The values are especially important when using the importance 

levels in low-level resource allocation decisions.  In this work, we determine appropriate 

weights for the importance levels through experimentation with the economic model. 

Each consumer agent in the economic model is responsible for a workload.  An 

estimate of the amount of work to complete (obtained by using the sum of the estimated 

number of I/O operations per query using the DB2 Explain utility) is used to determine 

the wealth awarded to the agent for the current allocation interval, where all work is 

considered equal.  This is then multiplied by an “importance multiplier” to enforce a 

degree of importance.  For example, an agent with a “High” degree of importance may 

have a multiplier of 3.0, while an agent with a “Best Effort” degree of importance may 

have a multiplier of only 1.0.  By adjusting these multipliers, we affect the amount that 

one class is more important than another by affecting their ability to outbid other classes 

for resources.  In our experiments, we look at the impact of a range of values for these 

multipliers. 
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The numbers selected for experimentation consist of a number of combinations of 

weights to represent different sets of degrees.  In all experiments, the Best Effort class is 

given a multiplier of 1.0.  We experiment with weights for the High Importance class that 

are similar to the Best Effort class (such as 3.0) and weights that represent a significant 

increase (such as 10.0), as well as middle values (5.0 and 6.0).  For the Normal class, we 

try values that range between the Best Effort multiplier and the High Importance 

multiplier (2.0 and 5.0).  These combinations of degrees allow us to examine how the 

relative importance of the different classes affects both individual class resource 

allocations and overall system performance. 

 

4.3 Definition of Importance 

Paramount in implementing importance in the DBMS is defining what importance 

means.  This definition describes the differences in entitlements and abilities between a 

higher-priority and lower-priority class. 

For this work, we are concerned with defining what importance means with 

regard to resource allocation.  We therefore base our definition on the entitlement one 

class has to resources compared to other classes.  We present three definitions of 

importance that we experiment with using our economic model simulation.  They 

represent two classical definitions of priority, namely non-preemptive and preemptive 

priority [10] as well as a variation on the preemptive model where High Importance 

classes are exempt from preemption.   

The first definition of importance states that all classes are entitled to their 

minimum necessary resource allocation.  Additional resources available in the system are 
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more likely to be assigned to important classes.  This represents a non-preemptive model.  

All classes are able to complete some work during an interval, with any additional 

resources being used to improve the performance of important work.  This allows us to 

provide a minimum guaranteed level of performance.  In our economic model, this is 

accomplished by pre-allocating the minimum required resources to each class before the 

auctions begin.  However, if the total resources available are less than the sum of the 

minimum allocations, we then scale the allocations according to their ratio of the total 

resources requested.  To calculate the minimum required resources, we pick a target 

buffer pool performance level and use the class’s utility curve to calculate the necessary 

resource allocation to meet that hit rate.  Thus, for a given workload class c, where 

Guarantee(c) is the calculated minimum resources pre-allocated, then: 

Importance(c) )()( cGuaranteecAllocation ≥≡    Equation 4.1 

In our experiments, we try both a 50% and 75% target buffer pool hit rate to determine 

the minimum resource requirement and guaranteed minimum hit rate. 

The second definition of importance states that the requirements of important 

classes should be satisfied before those of less important classes.  Important classes may 

be allocated all resources in the system such that less important classes must wait until 

resources are made available.  This definition represents a preemptive priority model.   

For the economic model simulation, this means that all resources are auctioned to the 

highest bidding class through the competitive mechanism.  For a given workload class c, 

then: 

Importance(c) 0)( ≥≡ cAllocation      Equation 4.2 
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The final definition of importance guarantees a high level of performance to High 

Importance classes and allows other classes to compete for remaining resources.  The 

purpose of this importance scheme is to address the possibility of a lower-importance 

class preempting the High Importance class.  Similar to the non-preemptive scheme, we 

implement this in the economic model by a pre-allocation of resources to the High 

Importance class.  The pre-allocated resource amount is based on a high level of 

performance for the class buffer pool.  For a given workload class c, with a minimum hit 

rate guaranteed by a pre-allocated amount of buffer pool pages Guarantee(c), then: 

 

Importance(c) ccGuaranteecAllocation ∀≥≡ )()(  where Importance(c)=High Importance 

Importance(c) ccAllocation ∀≥≡ 0)(  where Importance(c)={Normal, Best Effort} 

          Equation 4.3 

In our experiments, we try a target hit rate of 80%, 90%, and 95% and use the class’s 

utility curve to determine the necessary resource allocation to meet those targets. 

 

4.4 Aging Importance 

Allowing priorities to age is another interesting aspect of an importance policy 

that we chose to examine in this work.  Aging involves gradually incrementing the 

priority of objects over time.  This is commonly used to prevent starvation in CPU-

scheduling so that lower-priority processes are not blocked indefinitely by a steady 

stream of higher-priority jobs [25].  This is particularly relevant to our preemptive-style 

importance policy definition.  This allows a lower importance class to eventually 

overcome the preemption of the High Importance class. 
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In this work, aging involves allowing a class to better compete for resources the 

longer the workload has been running.  To implement this in the economic model, we 

allow classes to accumulate the wealth they do not spend in previous allocation periods.  

Thus, if a class is preempted, it will have twice the wealth in the next allocation period 

and be better able to compete against other classes that have likely expended all their 

wealth in the previous period.  For the non-aging schemes, classes do not carry over any 

wealth that is unspent. 

In our experiments, we utilize the economic model simulation to implement each 

of the various schemes described.  We experiment with a number of sets of degrees of 

importance.  We also implement each of the described definitions of importance.  

Additionally, we use each of these with and without aging.  The economic model allows 

us to implement each of these through simple rule and parameter changes.  We also 

experiment to determine which of these schemes provides the best Workload Class 

Importance Policy.  The policy should provide a clear benefit to High Importance classes 

while mitigating the overall impact on the system. 
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Chapter 5 

Experimental Analysis 

We describe the experimental environment in Section 5.1.  We present 

experiments to show the validity of our economic model simulation as a method for 

buffer pool allocation in Section 5.2.  Section 5.3 discusses degree of importance and 

presents experimental results supporting the degrees chosen for experimentation.  In 

Section 5.4, we experiment with different definitions of importance to determine the most 

useful definition for buffer pool memory allocation.     

 

5.1 Experimental Environment 

For our experiments, we use IBM’s DB2 Universal Database version 8.2 [21] 

running on an IBM xSeries 240 PC server with the Windows XP operating system [23].  

The server is equipped with two 1 GHz Pentium 3 processors, 2 GB of RAM and an array 

of 22 disks. 

We use a single instance of the DBMS with three identical databases.  The 

databases are TPC-C like and each contains 10 GB of data.  As an object to buffer pool 

mapping is a many-to-one relationship (a buffer pool may contain many objects while an 

object may only be contained in a single buffer pool) [31], we use the three separate 

databases to allow each workload to have its own buffer pool while still having access to 

all database objects.   
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The economic model simulation was created using the Eclipse IDE [14] and Java 

1.4.2 [27].  It was implemented as described in Chapter 3.  It is run on a standard desktop 

computer. 

 

5.1.1 Methodology 

We generated three OLTP type workload scripts, each consisting of 120,000 

queries based on the 5 different transactions of the TPC-C benchmark (see Appendix A).  

The workloads are similar, however, the order and proportions of the transactions vary 

slightly.  This is done to provide workloads with slightly varying resource needs.  The 

workloads are divided into 12 segments of 10,000 queries each to provide us with 

uniform points at which to resize the buffer pools.  This provides us with a consolidated 

workload reminiscent of a single organization with three business units running separate 

OLTP type workloads simultaneously against different sets of tables within the same 

database. 

The workloads are entered as input to the economic model simulator, which 

produces a list of allocations at each of the checkpoints.  At each segment checkpoint in 

the workload script, the buffer pool size is modified using the ALTER BUFFERPOOL 

statement with the IMMEDIATE keyword [20]. 

The IMMEDIATE keyword, when used in the ALTER BUFFERPOOL statement, 

allows for dynamic resizing of the buffer pools without starting and stopping the DBMS.  

When the command is used to increase the size of a buffer pool, additional memory pages 

are simply added from the database shared memory.  If the size is decreased, pages are 

released from the LRU (least recently used) queue [24], which is a list of pages that can 
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be made available for reading in new data from disk.  The dynamic resizing of the buffer 

pool selects the best candidate pages to be released first in order to minimize disk 

accesses.  We assume that DB2 dynamically resizes the buffer pools with the least 

possible impact. 

Once the allocations have been determined by the simulation, they are entered in 

the workload scripts, the databases are restored to their initial state.  The workloads are 

then run concurrently while we monitor the buffer pools throughout execution and collect 

statistics at each segment checkpoint.  We record the number of logical and physical 

reads for data and indexes for each of the three buffer pools.  This data is used to 

calculate the hit rates for each segment of the workloads. 

 

5.2 Economic Model Simulator Validation 

 The first set of experiments was conducted to determine the validity of the 

economic model as a method for resource allocation.  We begin by determining an 

appropriate maximum amount of available buffer pool memory for the three buffer pools. 

We also determine the granularity for the allocation of memory pages.  The values of a 

and b are determined for each of the workload class agent’s utility functions.  We then 

determine a manual allocation of buffer pool memory to each of the three buffer pools.  

Due to the time consuming nature of calculating the manual configuration, it results in a 

static configuration based on the entire duration of the workloads.  The simulator, 

however, is able to produce a dynamic allocation schedule.  We examine the model’s 

ability to allocate resources both with and without Workload Class Importance Policy 

labels.  Finally, we compare the simulation’s results for the model not using importance 
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information to the manual configuration to determine its effectiveness at producing 

allocations.  This comparison uses the total number of physical reads generated by all of 

the workloads.  A physical read occurs when the workload requires a page of information, 

either an index or data page, and that page is not available in the buffer cache.  Thus, the 

system is forced to read that data from the hard disk, which is a typically time consuming 

operation.  Therefore, the lower the number of physical reads the system must make, the 

better overall system performance will be achieved.  

 

5.2.1 Economic Model Simulator Experimental Results 

We begin by determining two key parameters for the simulation, memPages and 

pageBlockSize.  To determine the total amount of memory available, the workloads were 

run concurrently with a minimal amount of buffer pool space (500 4KB pages for each 

buffer pool) and again at a much higher size (20,000 buffer pool pages each).  With the 

smaller size, the average hit rate for the three workloads was 78.82% and with the larger 

size the average was 97.46%.  Using these results, we estimated the requirements to 

achieve a 95% average hit rate using Belady’s equation for all three workloads.  We then 

rounded this number up to 32,768 4KB memory pages for a total of 128 MB of available 

buffer pool memory.  With this amount of resources, an even allocation to all workloads 

should give a 95% hit rate and if a single class agent appropriates all resources, it would 

be able to achieve a hit rate near 97.5%. 

We then tested the effects of using different sizes for pageBlockSize.  This 

parameter is the number of memory pages available in each auction.  This affects the 

level of fine-tuning to which class agents can obtain resources.  Using a block size of 50 
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pages not only increases the number of auctions that are held for each allocation period, 

but the marginal utility calculated by the class agents was so low that they quit bidding 

very early.  Page block sizes of 100 pages and 500 pages were also tried.  We found that 

using a course granularity of 500 pages or greater did not allow classes to approach the 

maximum performance level for their wealth because they could be up to 499 memory 

pages below their ideal allocation.  We settled on using a page block size of 100 pages as 

it provided a balance of refinement for the allocations and a large enough marginal utility 

for class agents, using the utility functions we’ve defined, to make accurate bidding 

decisions. 

The values of a and b were determined by using the buffer pool performance 

results for a buffer pool of 500 pages and of 20,000 pages from the previous experiments.  

Using the equations presented in Chapter 3, values for a and b were obtained for each 

class agent. 

For the all of the remaining experiments presented in this work, we set the 

memPages parameter to 32, 768 and the pageBlockSize parameter to 100.  Similarly, the 

values of a and b for each class agent are constant for all of the experiments presented in 

this work.  Only the parameters affecting the Workload Class Importance Policy are 

altered and these settings are discussed for each experiment. 

To show the validity of this approach to resource allocation, we first manually 

determine an allocation.  This manual allocation does not take into account importance, 

but tries to maximize the hit rate for each buffer pool while minimizing the overall 

number of physical disk accesses.  This allocation was arrived at by using an initial 

estimate based on the workload characteristics and the comparative needs of the three 
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workloads.  The DBMS was then configured to use this initial allocation.  The buffer 

pool performance was monitored and the allocations were refined.  This refinement 

continued until all workloads exhibited similar performance and the total number of 

physical reads reached a minimal value.  This resulted in the allocation shown in Table 

5.1. 

 

Allocations int 1 int 2 int 3 int 4 int 5 int 6 int 7 int 8 int 9 int 10 int 11 int 12 

Manual                         

Class 1 9980 9980 9980 9980 9980 9980 9980 9980 9980 9980 9980 9980 

Class 2 11389 11389 11389 11389 11389 11389 11389 11389 11389 11389 11389 11389 

Class 3 11399 11399 11399 11399 11399 11399 11399 11399 11399 11399 11399 11399 

                          

Preemptive w/  
Aging 

                        

Class 1 11368 11300 11200 11200 11168 11400 11300 11268 11200 11200 11300 11368 

Class 2 10800 10868 10800 10668 10600 10500 10800 10600 10600 10700 10868 10700 

Class 3 10600 10600 10768 10900 11000 10868 10668 10900 10968 10868 10600 10700 

                          

Preemptive w/o 
 Aging 

                        

Class 1 11368 11200 11100 11100 11068 11400 11200 11168 11100 11100 11268 11300 

Class 2 10800 10900 10800 10600 10600 10500 10968 10600 10668 10800 10900 10768 

Class 3 10600 10668 10868 11068 11100 10868 10600 11000 11000 10868 10600 10700 

Table 5.1: Comparing manual buffer pool allocations to results of economic model 

 

We then use the economic model simulator to provide a set of allocations with all 

classes at an equal level of priority. We ran the simulation using the preemptive model 

(all resources allocated through competition) since it is the purest form of the economic 

model.  We tested both with and without aging to see if there were any significant 

differences at this point.  For these tests, all classes were labeled as Normal Importance.  
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However, running the simulation with all classes at the same level of importance should 

provide the same resulting allocations regardless of whether they are all at High 

Importance, Normal, or Best Effort.   

The resulting allocations are different from those of the manual configuration as 

they demonstrate two different methods for reaching a similar goal.  Whereas the manual 

configuration gave Class 1 the lowest allocation, the economic model consistently 

allocates the largest amount of buffer pool space to Class 1.  This is due to the initial 

estimate, the starting point, used by the manual configuration.  Although, through the 

refinement phase, the amount of memory assigned to Class 1 increased, the goal hit rates 

were reached before the allocation to Class 1 exceeded the other class allocations.  In the 

economic model simulation, all classes start at the same point, there is no initial estimate. 

We ran each of the resulting workload scripts on the test system using the 

allocations in Table 5.1.  The configurations were each run three times and the results 

presented below are an average of the three runs.  The resulting number of physical reads 

from the three runs showed a variation of less than 0.3% from the mean.  This low 

variation is expected as the workload scripts are identical for each test run.  We compare 

the resulting allocations of the simulator and the manual allocation. 

 



www.manaraa.com

50 

Number of Physical Reads

33559 32778 32612

26593 27450 27290

26386 26949 26692

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Manual Preemptive w/ Aging Preemptive w/o Aging

Allocation Method

Ph
ys

ic
al

 R
ea

ds

Workload 3
Workload 2
Workload 1

 

Figure 5.1: Total number of physical reads for configurations suggested by manual configuration 

and simulation 

 

The two simulator allocations resulted in performance very similar to that of the 

manual static allocation.  As seen in Figure 5.1, the total number of physical reads is 

similar for each of the configurations. 

With no importance levels set, it appears that the economic model simulation 

provides configurations resulting in similar performance.  Thus, we can assume that the 

economic model simulation will provide us with an adequate buffer pool space allocation 

system. 

The next experiments involved running the economic model simulation with a 

number of different combinations of importance. As the workloads all have similar 
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resource needs, when run with different combinations of importance labels, a correct 

allocation will show a High Importance class to receive a large portion of the allocation, 

while a Best Effort class will receive a low allocation.  Each of these runs is done using 

the Preemptive model without Aging (by setting parameters preemptive = true and aging 

= false) so as to provide the purest example of the economic model at work.  This results 

in all allocations being done through competition and the results of the previous interval 

does not affect future intervals.  Some sample results are presented in Table 5.2. 

 

Allocations int 1 Int 2 int 3 int 4 int 5 int 6 int 7 int 8 int 9 int 10 int 11 int 12 

Class 1 – High 15400 15300 15268 15300 15300 15500 15368 15368 15368 15268 15300 15400 

Class 2 - Normal 13068 13100 13100 12968 12900 12768 13000 12900 12900 13000 13100 12968 

Class 3 – Best 4300 4368 4400 4500 4568 4500 4400 4500 4500 4500 4368 4400 

                          

Class 1 - High 14668 14568 14468 14568 14568 14800 14600 14600 14600 14500 14600 14668 

Class 2 - High 14000 14100 14100 13900 13900 13700 14000 13900 13868 14000 14068 13900 

Class 3 – Best 4100 4100 4200 4300 4300 4268 4168 4268 4300 4268 4100 4200 

                          

Class 1 – Best 5000 5000 5000 5000 4968 5100 5000 5000 5000 5000 5068 5100 

Class 2 - Normal 14000 14068 13900 13700 13700 13600 13968 13768 13668 13800 14000 13868 

Class 3 - Normal 13768 13700 13868 14068 14100 14068 13800 14000 14100 13968 13700 13800 

Table 5.2: Allocation results from different combinations of importance labels using simulator 

 

As can be seen in these allocations, workloads with similar importance levels 

receive similar allocations.  Additionally, as there are fewer High Importance classes, the 

Best Effort classes receive higher allocations.  All of the allocations are as we expected, 

thus confirming that the model simulator is able to allocate buffer pages appropriately 

according to importance levels.  However, these results are with the (1.0, 2.0, 3.0) 
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multiplier set (by setting the following parameter values: importantMultiplier = 3.0, 

normalMultiplier = 2.0, and bestEffortMultiplier = 1.0), so we must still experiment to 

determine that these are correct degrees of importance for each importance level.  This is 

shown in Section 5.3. 

 

5.3 Degree of Importance 

When implementing an importance policy, the degree to which one class is more 

important than another is a key problem.  We experiment, using our economic model 

simulation, to determine the proper degree of difference for the various priority levels.  

The model examines three different importance levels: High Importance, Normal, and 

Best Effort. 

The degrees of importance are implemented through multipliers for the wealth 

assigned to a class; a higher importance class will have a higher multiplier, giving the 

class more total wealth with which to purchase resources and be able to outbid 

competitors.  In all experiments, the Best Effort class is given a multiplier of 1.0.  This is 

reasonable, since a Best Effort class should only be able to acquire resources if there is no 

other higher importance class that desires them.  Thus, a Best Effort class will only be 

able to pay a minimum price for resources.  We try a number of other multipliers for the 

High and Normal importance classes. 
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5.3.1 Evaluation Criteria 

A proper Importance scheme within an economic model will provide the highest 

price difference between what the high priority class is paying for resources compared to 

the lower priority classes.  This will demonstrate that the high priority classes are able to 

purchase the resources needed before the lower priority classes.  However, this is 

mitigated by the need to cause the lowest increase in the number of physical reads for the 

lower priority classes so that overall system performance is impacted as little as possible.  

Since hit rate is proportional to buffer space allocation, we look for the highest average 

allocation for the normal priority and best effort classes.  Thus, we look for the best 

combination of these two metrics: 

• Price Differential:  the difference in average price paid for resources between high 

priority and best effort classes, a higher value is better. 

• Average Allocation:  The average number of buffer pool pages allocated to the 

normal priority and best effort classes, a higher value is better. 

The results for each metric are normalized with respect to the mean for that metric and 

then combined into a single metric to show the best combination of the two. 

 

5.3.2 Experimental Results 

We tried five different sets of multipliers.  In order of Best Effort, Normal, and 

High Importance, the sets were: (1.0, 2.0, 3.0), (1.0, 2.0, 5.0), (1.0, 2.0, 10.0), (1.0, 5.0, 

6.0), and (1.0, 5.0, 10.0).  These represent a number of different relative differences in 
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importance, such as High Importance being similar to Best Effort or very much preferred, 

and Normal Importance spanning the range from Best Effort to High Importance.  We 

test these parameter settings using the Preemptive model of importance with and without 

Aging. 

The results of the simulation for these different sets of multipliers provided two 

sets that performed better than the others according to our criteria of price differential and 

average allocation (Figures 5.2 and 5.3). 
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Figure 5.2: Price Differential between High Importance and Best Effort classes for different 

multiplier sets 
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Average Allocation
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Figure 5.3:  Average Allocation awarded to Normal and Best Effort classes using different multiplier 

sets 

 

From the Figures, we see that the fourth set (1.0, 5.0, 6.0) scored best in average 

allocation while the fifth set (1.0, 5.0, 10.0) provided the best price differential.  When 

we normalize the multiplier set metrics and combine them into a single score we see a 

clear leader as seen in Figure 5.4. 
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Combined Normalized Price Differential and Average 
Allocation Rank
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Figure 5.4: Combined normalized price differential and average allocation rank 

 

The fourth set (1.0, 5.0, 6.0) provides the best combination of our two desired 

metrics.  We further experimented to compare these two candidates (the fourth and fifth 

sets) and ran the different allocations (Table 5.3) on our test system to find their resulting 

total number of physical reads, with the lowest number indicating the best multiplier set 

(Figure 5.5).   
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Allocations int 1 int 2 int 3 int 4 int 5 int 6 int 7 int 8 int 9 int 10 int 11 int 12 

1.5.6                         

High Importance 15400 15300 15268 15300 15300 15500 15368 15368 15368 15268 15300 15400 

Normal Importance 13068 13100 13100 12968 12900 12768 13000 12900 12900 13000 13100 12968 

Best Effort 4300 4368 4400 4500 4568 4500 4400 4500 4500 4500 4368 4400 

                          

1.5.10                         

High Importance 18200 18100 18068 18068 18068 18300 18100 18100 18100 18068 18100 18200 

Normal Importance 10968 11000 11000 10900 10900 10700 10968 10868 10868 10900 10968 10868 

Best Effort 3600 3668 3700 3800 3800 3768 3700 3800 3800 3800 3700 3700 

Table 5.3: Allocations used for determining multiplier set 
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Figure 5.5: Total physical reads on test system using best candidate multiplier sets 
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We found that when run using our test set up, the set of (1.0, 5.0, 6.0) resulted in 

5.55% fewer physical reads than (1.0, 5.0, 10.0).  Thus, we selected (1.0, 5.0, 6.0) as our 

multiplier set for our further experiments in implementing an importance policy.  

Although these specific multipliers may be specific to these experiments, there are rules-

of-thumb that can be observed from these results. 

• The Best Effort class should have a multiplier of one to ensure that it is not able to 

be allocated resources at anything but the minimum price. 

• The High Importance class should have a significantly higher multiplier than the 

Best Effort class to ensure that it has the wealth to purchase resources and reach 

its desired allocation before other classes. 

• The Normal Importance class should have a multiplier similar to that of the High 

Importance class so that its overall impact on the system is mitigated by a higher 

average allocation, resulting in a lower total number of physical reads.  

 

5.4 Definition of Importance 

The second key problem in implementing a Workload Class Importance Policy is 

defining what importance means.  Traditionally, in computing, there are two 

implementations of priority: preemptive and non-preemptive.  In a preemptive scheme, 

one agent can commandeer all resources, preventing others from executing.  A non-

preemptive scheme, on the other hand, does not allow one class to prevent others from 

executing.  Additionally, these schemes have been augmented with Aging.  That is, as an 

agent is forced to wait for the resources it needs, its ability to compete for buffer pool 

memory is increased. 
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We investigate a number of definitions of importance, as explained in Chapter 4.  

These include: 

• Preemptive: In a preemptive scheme, one class may appropriate all resources 

preempting the execution of others. 

• Non-Preemptive: In the non-preemptive scheme, a minimum amount of resources 

are guaranteed to all classes. 

• Preemptive exempting High Importance: In this scheme, we pre-allocate the 

resources the high priority class needs and use a preemptive model for the 

remaining resources.  This guarantees a level of performance only for important 

classes. 

 

The two importance schemes that offer an initial allocation of memory also 

required additional experimentation to determine the appropriate initial allocation.  For 

the Non-Preemptive schemes, we looked for a minimum value that would allow every 

class agent to achieve a modest buffer pool hit rate.  We try initial allocations targeting a 

50% and a 75% buffer pool hit rate for each class agent.  The allocation is determined 

using the inverse of Belady’s equation for each class agent.  This is meant to act as a 

guaranteed minimum level of performance for all workload classes. 

For the High Importance exempt Preemptive scheme, we try to provide a high 

level of performance to the High Importance classes while still allowing some resources 

to be available to less important classes.  We select initial allocations targeting 80%, 90% 

and 95% buffer pool hit rates for the High Importance classes while the less important 

classes receive no initial allocation.  This ensures that the High Importance classes do not 
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have their performance impacted by a lower importance class with a large amount of 

wealth. 

In both of these schemes, the class agents are charged appropriately for these 

allocations according to their amount of wealth. As stated in Chapter 3, a class agent pays 

a corresponding percentage of its wealth for a corresponding hit rate.  Thus, an initial 

allocation targeting a 50% buffer pool hit rate would cost 50% of a class agent’s wealth.  

This allows for classes to still participate in the economy, however, they have less wealth 

and will likely be able to win fewer auctions as a penalty for their being granted a 

minimum performance.  This removes the competitive advantage of having a pre-

allocated amount of memory.  If the classes were not charged and they were pre-allocated 

a significant amount of memory, they would be able to still make large bids for resources 

they normally could not afford. 

We examine each of these importance schemes with and without Aging.  Aging is 

implemented in the economic model simulation by allowing class agents to accumulate 

wealth.  In the non-aging schemes, class agents do not carry over any unspent wealth 

from segment to segment. 

 

5.4.1 Evaluation Criteria 

To evaluate the effectiveness of the importance schemes, we examine two criteria.  

First, we want an importance scheme that provides the highest benefit to the classes 

designated as High Importance.  This will be evident by the hit rate that is achieved from 

the allocations provided by the simulation. The hit rate is the percentage of the time when 

a requested page of information, either an index page or data page, is found in the buffer 
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cache.  This is a common measure of the performance of a single buffer. A higher hit rate 

is better.   

Secondly, we want to provide this benefit to important classes with as little effect 

on the rest of the system as possible.  Thus, we also look at the total number of physical 

reads recorded by the system for each importance scheme as in Section 5.2 and 5.3.  

Again, a lower score is better for total physical reads.  We claim that the scheme that can 

provide the best combination of these two criteria provides us the most beneficial 

definition of importance when looking at allocating buffer pool space. 

 

5.4.2 Experimental Results 

For the following experiments, we continue to use memPages = 32,768 and 

pageBlockSize = 100.  The values of a and b for each class agent are the same as 

determined in Section 5.2.  Every result showing buffer pool performance statistics, such 

as hit rate and physical reads, presents of an average of three runs on the test setup. 

We first experiment to determine the initial allocations in the Non-Preemptive and 

High Importance Exempt schemes.  We begin with the Non-Preemptive scheme (set 

parameter preemptive = false), with and without Aging, at an initial allocation targeting 

50% and 75% buffer pool hit rates for each class agent to determine the proper value for 

the minHitrate parameter.  The results are as shown in Figures 5.6 and 5.7. 
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Figure 5.6: Hit rate of High Importance class using target 50% and 75% buffer pool hit rate initial 

allocations for Non-preemptive scheme 
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Figure 5.7:  Average allocation of Normal and Best Effort classes using target 50% and 75% buffer 

pool hit rate initial allocations for Non-preemptive scheme 
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As shown in Figure 5.6, the initial allocation has little effect on the hit rate 

achieved by the High Importance class.  This is due to the High Importance class agent’s 

ability to acquire additional resources.  However, there is a noticeable difference in the 

average allocations of the Normal and Best Effort classes.  Using an initial allocation 

targeting 75% hit rate results in a higher average allocation for the two lower importance 

classes.  This will result in a lower number of total physical reads due to the diminishing 

returns nature of the relationship between buffer pool size and hit rate.  By reallocating 

memory from the High Importance class to the less important classes, the increase in 

physical reads for the High Importance class is more than offset by the decrease in 

physical reads for the lower importance classes.  Thus, we use a 75% target for the initial 

allocation (set parameter minHitrate = 0.75) in the following experiments. 

Similarly, we examine three initial allocations for the High Importance Exempt 

scheme to determine the proper setting for the exemptImportantHitrate parameter.  They 

are initial allocations targeting 80%, 90%, and 95% buffer pool hit rates.  Again, these 

initial allocations are calculated using the inverse of Belady’s equation.  As shown in 

Figure 5.8, we see the best hit rates are achieved by the 80% and 95% allocations. 
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High Importance Class Hit Rate
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Figure 5.8: High Importance class hit rates achieved using target 80%, 90%, and 95% buffer pool hit 

rate initial allocations for Preemptive exempt High Importance scheme 

 

However, when looking at the allocations received by the High Importance class 

under each of these schemes, we see that, under the 80% scheme the class must still 

compete for most of its allocation (Figure 5.9) to achieve this high hit rate. 
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Figure 5.9: Initial allocation versus total allocation under each scheme (darker portion is initial 

allocation, lighter portion represents resources won through competition) 

 

As is shown, with the target 80% hit rate initial allocation, the High Importance 

class is very dependant on winning resources through competition for its performance.  

This is not a desired quality as another class could acquire those resources.  The target 

95% buffer pool hit rate initial allocation scheme gives a High Importance class the 

resources it needs so that it can maintain a very high hit rate without needing to compete 

for resources.  This the property that we desire for the initial allocation, so the target 95% 

buffer pool hit rate initial allocation for the High Importance class (set parameter 

exemptImportantHitrate = 0.95) is used in all further experiments.  This allows us to 

guarantee a high-level of performance without being dependant on the ability to compete 

for resources.  This will help to prevent the High Importance classes from being 

preempted. 
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We began the experiments by running each importance scheme in simulation.  We 

then ran the resulting allocations (Table 5.4) on our test set up three times, recording both 

hit rates and physical reads.  Figures 5.10 and 5.11 present the average results. 

 

Average 
Allocations 

Non-Preemptive 
w/ Aging 

Non-Preemptive 
w/o Aging 

High Exempt 
w/ Aging 

High Exempt 
w/o Aging 

Preemptive 
w/ Age 

Preemptive 
w/o Aging 

High 
Importance 14990 15015 10658 10658 15345 15281 

Normal 
Importance 13408 13259 16497 16523 12981 13070 

Best Effort 4515 4494 5613 5588 4442 4417 
Table 5.4: Average memory allocations for each Importance scheme suggested by Simulation 
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Figure 5.10: Average hit rate for High Importance classes using each importance scheme 
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Figure 5.11: Total physical reads recorded using each importance scheme 

 

We first examined the difference between schemes with and without Aging.  In 

general, we see a lower hit rate for the High Importance classes when Aging is involved.  

We also see a lower total number of physical reads in schemes that include Aging 

(Figures 5.12 and 5.13). 
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Figure 5.12: Comparing average hit rates for Importance schemes with and without Aging 
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Figure 5.13: Comparing average physical reads for Importance schemes with and without Aging 

 

As can be seen from Figures 5.12 and 5.13, there is no clearly better scheme.  

However, the results of implementing Aging do seem to create a slight moderating effect, 
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as should be expected.  Aging was implemented to allow lower importance classes to 

eventually be more competitive.  In some intervals the lower importance class agents will 

be winning resources away from the High Importance class.  Due to the diminishing 

returns nature of the relationship between buffer pool size and buffer pool hit rate, this 

will lower the hit rate of the High Importance class.  However, the increase in physical 

reads incurred by the High Importance class will be more than offset by the decrease in 

physical reads for the other classes as their hit rates increase. 

Figure 5.14, shows each of the different importance schemes normalized and 

combined scores in the two metrics.  Since we want a higher hit rate for the High 

Importance class and a lower total number of physical reads across all classes, a 

combined score closest to zero provides the best balance of the criteria. 

Combined Normalized High Importance Class Hit Rate and 
Total Physical Reads Ranking
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Figure 5.14: Combined normalized High Importance Class hit rate and total physical reads ranking 
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When looking at each scheme and their performance when we normalize the 

metrics, we see that the Non-Preemptive schemes provide the best balance of the two 

criteria.  Semantically, this scheme would indicate that all workload classes can be 

guaranteed a minimum level of performance, while High Importance classes will be able 

to reach a significantly higher level and overall system performance is impacted as little 

as possible.  Through a basic economic model, this scheme can be achieved in an 

automated fashion through simple rules of wealth assignment and trade.  By assigning 

wealth based on the estimated number of I/O operations, by pre-allocating resources and 

charging a minimal amount for them, and by allowing any additional resources to be 

allocated through a competitive auction system, we were able to implement this 

importance scheme using our economic model. 
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Chapter 6 

Conclusions and Future Work 

To progress to the Autonomic stage, Adaptive computing systems must be guided 

by business policies.  However, many of these business policies do not directly translate 

to metrics used for computer system performance.  In this thesis, we present the use of an 

economic model to bridge the gap between these different metrics.  The model is built to 

represent the buffer pool memory allocation problem in database management systems.  

We then utilize this model to investigate the implementation of a Workload Class 

Importance Policy.  The model is implemented as an offline simulation to test the 

performance of a number of different possible importance policies.  Section 6.1 

summarizes the contributions of this thesis, while Section 6.2 presents conclusions based 

on our experiments.  Finally, Section 6.3 suggests some direction for future work. 

 

6.1 Thesis Contributions 

This thesis examines some of the difficulties in implementing business policy 

guided Autonomic computing.  We identify the translation of typical business policy 

metrics to computing system performance metrics as a key challenge.  As a solution, we 

suggest and implement an economic model for resource allocation.  We use this 

economic model in simulation to address the buffer pool sizing problem to test the 

model’s validity.  Finally, we use this model and simulation to address the difficulties in 

implementing a Workload Class Importance Policy. 
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We develop an economic model that contains consumer agents that each 

represents a different workload running on a single DBMS.  These agents are each 

assigned a utility function that is used to determine the desired allocation of resources.  

The model also contains a broker that is responsible for allocating the resource through a 

sealed-bid auction process. 

This model is developed into an offline simulation representing the buffer pool 

sizing problem.  A single broker is responsible for distributing buffer pool memory to the 

various consumer agents representing concurrent workloads on the DBMS.  Consumer 

agents are provided a workload, a utility function, and wealth.  Through a series of 

auctions, the consumers obtain the required buffer pool memory from the broker.  The 

simulation presents the results as a series of memory allocations at checkpoints in the 

workloads.  To validate the model, we compare the resulting allocations of the simulation 

with those of a manual configuration. 

We use the economic model simulator to implement a Workload Class 

Importance Policy.  The model allows us to implement a number of possible importance 

policies by varying the way in which wealth is allocated to the class agents and the rules 

of resource allocation followed by the broker.  We experiment with each of the different 

importance schemes and select the one that provides the best performance for the most 

important classes while still providing a high level of system wide optimization. 
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6.2 Conclusions 

Based on our experimentation, we can conclude: 

• The basic economic model used in this work provides an adequate method of 

allocating buffer pool space.  The results achieved are very similar to that of the 

manual configuration.  The added benefits of decentralization, automation, and 

simple consumer agents make the economic model an interesting approach to 

utilize for resource allocation. 

• The economic model greatly eases the implementation of a Workload Class 

Importance Policy.  Through minor rule and parameter changes, we are able to 

implement a variety of possible importance policies. 

• Non-Preemptive importance schemes provide the best balance of a relatively high 

hit rate for important classes and a low number of system-wide physical reads 

mitigating overall system impact.  Due to the diminishing returns relationship 

between buffer pool size and hit rate, giving the initial allocation to the low 

importance classes provides a greater decrease in the total number of physical 

reads than allowing the high importance class to win these additional pages and 

achieve a higher hit rate. 

• The degree of importance that provided the best results involved a large 

differential between the High Importance class and the Best Effort class while 

having a small differential between the High Importance class and the Normal 

Importance class. 
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• Aging importance schemes consistently give a lower average hit rate for the high 

importance class compared to the same importance scheme without aging, while 

resulting in a lower number of physical reads system wide.  The schemes using 

aging allow the lower importance classes to appropriate some of the resources 

from the higher importance classes on occasion.  This is again due to the 

relationship between buffer pool size and hit rate. 

 

6.3 Future Work 

There are a number of interesting avenues of future research suggested by this 

work.  Some of the most interesting are: 

• Refining the economic model.  Although we use Belady’s equation as a hit rate 

estimator for our utility curve, there has been work done suggesting alternative hit 

rate estimators [28].  Implementing these as utility curves could provide differing 

results.  As well, alternative trade mechanisms, such as reverse auctions could be 

investigated as they have been used in other economic models with success. 

• Extending the economic model.  Future work would look at expanding the model 

to allocate multiple resources by adding additional brokers and to allow classes to 

trade-off between the various resources by utilizing multiple utility functions.  

Additionally, more economic features, such as a futures market, could be added to 

allow for agents to choose when to execute to maximize performance for a given 

budget.  This would be especially useful in a system where the wealth of a class 

represents a real-world budget. 
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• Implementing additional business policies.  Policies such as an Operating Costs 

policy could be implemented where the broker can only lend out resources in 

accordance with the costs it incurs for the resource to run, i.e. if using an 

additional disk drive costs x dollars and the client is willing to spend y dollars, the 

broker will only sell the resource if y >= x.  This would be useful in guiding 

systems towards profit maximization. 

 

Economic models provide a very interesting avenue of study for resource allocation 

problems in Autonomic Computing.  Although this research has been underway for some 

time now [12], it has yet to make much impact in commercial products.  However, when 

taking into consideration the ease with which most business policies translate into 

economic terms and that business policy guidance is a key feature of Autonomic 

Computing, these systems should gain additional interest. 
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Appendix A  

TPC-C Benchmark 

The workloads used in this research are based on the TPC-C benchmark 

developed by the Transaction Performance Council (TCP).  The TPC-C benchmark is 

used to test the performance of transaction processing systems.  It is an online transaction 

processing (OLTP) benchmark that models an order-entry system.   

The TPC-C benchmark is based on an actual business model, that of a wholesale 

parts supplier.  It represents a business that maintains a number of warehouses associated 

with sales districts.  Each warehouse serves ten sales districts and each sales district 

serves three thousand customers.  The benchmark emulates operators in sales districts 

selecting one of five transactions. 

The benchmark utilizes multiple types of transactions to represent typical order-

entry behaviours such as entering orders, recording payments, and monitoring stock 

levels.  The most common transaction is entering a new order.  Similarly, recording 

payments for these transactions is also very common.  The other transactions represented 

involve checking order status, recording order delivery, and checking warehouse stock 

level.  The ratios of these transactions are shown in Figure A.1. 
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Figure A.1:  The percentage frequency of the different transactions in the TPC-C workload. 

 

The database used by the model contains nine relations as shown in Figure A.2.  

As mentioned, each warehouse serves 10 districts with each district serving 3000 

customers.  Additionally, each warehouse maintains stock for 100,000 items.  The stock 

for each item at all warehouses is recorded in the Stock relation.   
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Figure A.2:  Database schema for TPC-C benchmark 

 

The Order relation records all orders while the New_Order relation maintains a 

list of pending orders with the Order_Line relation containing a list of the items for each 

order.  Finally, the History relation keeps records of payments for orders. 

 

The five different transactions function as follows: 

 

• New Order: places an order for, on average, 10 items.  The transaction inserts a 

record in the Order and Order_Line relations and updates the corresponding stock 

level. 

• Payment: updates the Customer relation with new balance and records payment in 

the History relation. 
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• Delivery: processes a batch of 10 orders from the New_Order relation, removes 

them from New_Order and updates the Order relation and Customer relation to 

indicate the delivery. 

• Order Status: checks the current status of a customer’s order. 

• Stock Level: Checks warehouses for possible supply shortages. 
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Appendix B  

TPC-C Transaction Query Details 

This section presents the SQL queries issued by each of the TPC-C transactions.  

Also presented are the DB2 Explain utility’s estimated I/O operations for each query as 

used in the economic model simulation to estimate the amount of work for a given 

workload class. 

 
B.1 New Order 

1. SELECT w_tax, c_discount, c_last, c_credit 
     INTO :*s_W_TAX, :*s_C_DISCOUNT, :s_C_LAST, :s_C_CREDIT 
     FROM warehouse, customer 
     WHERE w_id   = :*s_W_ID 
      AND   c_id   = :*s_C_ID 
      AND   c_w_id = :*s_W_ID 
      AND   c_d_id = :*s_D_ID; 
Estimated number of I/O Operations: 3 
 
2. UPDATE district 
     SET d_next_o_id = :d_next_o_id 
     WHERE d_w_id = :*s_W_ID 
      AND d_id = :*s_D_ID; 
Estimated number of I/O Operations: 3 
 
3. INSERT INTO orders 
     VALUES (:*s_O_ID, :*s_C_ID, :*s_D_ID, :*s_W_ID, :*s_O_ENTRY_D_time, 
              NULL, :*s_O_OL_CNT, :*s_all_local); 
Estimated number of I/O Operations: 1 
 
4. INSERT INTO new_order VALUES (:*s_O_ID, :*s_D_ID, :*s_W_ID); 
Estimated number of I/O Operations: 1 
 
5. SELECT i_price, i_name, i_data 
       INTO :s_I_PRICE, :s_I_NAME, :i_data 
       FROM item 
       WHERE i_id = :s_OL_I_ID; 
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Estimated number of I/O Operations: 3 
 
6. SELECT s_quantity, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05,  

s_dist_06, s_dist_07, s_dist_08, s_dist_09, s_dist_10, s_ytd, s_order_cnt, 
s_remote_cnt, s_data 

       INTO :s_S_QUANTITY, :dist_01, :dist_02, :dist_03, :dist_04, :dist_05, 
             :dist_06, :dist_07, :dist_08, :dist_09, :dist_10, :s_ytd, :s_order_cnt, 
             :s_remote_cnt, :s_data 
       FROM stock 
       WHERE s_w_id = :s_OL_SUPPLY_W_ID 
        AND s_i_id = :s_OL_I_ID; 
Estimated number of I/O Operations: 4 
 
7. UPDATE stock 
       SET s_quantity = :s_S_QUANTITY, 

s_order_cnt = :s_order_cnt, 
            s_ytd = :s_ytd, 
            s_remote_cnt = :s_remote_cnt 
       WHERE s_w_id =  :s_OL_SUPPLY_W_ID AND s_i_id = :s_OL_I_ID; 
Estimated number of I/O Operations: 5 
 
8. INSERT INTO order_line 

VALUES ( :*s_O_ID, :*s_D_ID, :*s_W_ID, :i, :s_OL_I_ID, 
:s_OL_SUPPLY_W_ID, NULL, :s_OL_QUANTITY, 
:i_OL_AMOUNT, :d_data ); 

Estimated number of I/O Operations: 1 
 
B.2 Payment 

1. UPDATE customer 
SET     c_data1 = :data1, 

                        c_data2 = :data2 
WHERE c_id   = :*s_C_ID 

AND   c_w_id = :*s_W_ID 
AND   c_d_id = :*s_D_ID; 

Estimated number of I/O Operations: 5 
 
2. SELECT w_street_1, w_street_2, w_city, w_state, w_zip, w_name, w_ytd 
  INTO :s_W_STREET_1, :s_W_STREET_2, :s_W_CITY, :s_W_STATE, 

:s_W_ZIP, :w_name, :w_ytd 
FROM warehouse WHERE w_id = :*s_W_ID; 

Estimated number of I/O Operations: 2 
 
3. SELECT d_street_1, d_street_2, d_city, d_state, d_zip, d_name, d_ytd 

INTO :s_D_STREET_1, :s_D_STREET_2, :s_D_CITY, :s_D_STATE, 
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:s_D_ZIP, :d_name, :d_ytd 
FROM district WHERE d_id = :*s_D_ID AND d_w_id = :*s_C_W_ID; 

Estimated number of I/O Operations: 2 
 
4. INSERT INTO history 

VALUES (:*s_C_ID, :*s_C_D_ID, :*s_C_W_ID, :*s_D_ID, :*s_W_ID, 
:*s_H_DATE_time, :*s_H_AMOUNT, :hist_data); 

Estimated number of I/O Operations: 1 
 
B.3 Delivery 

1. SELECT MIN( no_o_id ) 
INTO :o_id :o_id_i 

            FROM new_order 
            WHERE no_w_id = :*s_W_ID 
             AND   no_d_id = :district; 
Estimated number of I/O Operations: 6 
 
2. DELETE FROM new_order 

WHERE no_w_id = :*s_W_ID 
             AND   no_d_id = :district 
                        AND   no_o_id = :o_id; 
Estimated number of I/O Operations: 4 
 
3. UPDATE orders 

SET o_carrier_id = :*s_O_CARRIER_ID 
            WHERE o_id   = :o_id 
                        AND   o_w_id = :*s_W_ID 
                        AND   o_d_id = :district; 
Estimated number of I/O Operations: 4 
 
4. SELECT SUM( ol_amount ) 

INTO :ol_amounts 
            FROM order_line 
            WHERE ol_w_id = :*s_W_ID 
                        AND   ol_d_id = :district 
                        AND   ol_o_id = :o_id; 
Estimated number of I/O Operations: 3 
 
5. UPDATE ORDER_LINE 

SET ol_delivery_d = :deliveryDate 
            WHERE ol_w_id = :*s_W_ID 
                        AND   ol_d_id = :district 
                        AND   ol_o_id = :o_id; 
Estimated number of I/O Operations: 14 
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6. SELECT o_c_id, o_ol_cnt 

INTO :c_id, :ol_cnt 
            FROM orders 
            WHERE o_id   = :o_id 
                        AND   o_w_id = :*s_W_ID 
                        AND   o_d_id = :district; 
Estimated number of I/O Operations: 3 
 
7. SELECT c_balance, c_delivery_cnt 

INTO :c_balance, :c_delivery_cnt 
            FROM customer 
            WHERE c_w_id = :*s_W_ID 
                        AND c_d_id = :district 
                        AND c_id = :c_id; 
Estimated number of I/O Operations: 4 
 
B.4 Order Status 
1. SELECT c_first, c_middle, c_last, c_balance 

INTO :s_C_FIRST, :s_C_MIDDLE, :s_C_LAST, :*s_C_BALANCE 
            FROM customer 
            WHERE c_id = :*s_C_ID 
             AND c_w_id = :*s_W_ID 
                 AND c_d_id = :*s_D_ID; 
Estimated number of I/O Operations: 4 
 
B.5 Stock Level 
1. SELECT d_next_o_id 

INTO :d_next_o_id 
            FROM district 
            WHERE d_w_id = :*s_W_ID 
                 AND d_id = :*s_D_ID; 
Estimated number of I/O Operations: 2 
 
2. SELECT count(distinct S_I_ID) 

INTO :*s_low_stock 
            FROM order_line, stock 
            WHERE ol_w_id = :*s_W_ID 
                 AND ol_d_id = :*s_D_ID 
                 AND ol_o_id < :max_o_id and ol_o_id > :min_o_id 
                 AND s_i_id = ol_i_id 
                 AND s_w_id = ol_w_id 
                 AND s_quantity < :*s_threshold; 
Estimated number of I/O Operations: 141 
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