
www.manaraa.com

Policy-Based Tuning in Autonomic
Database Management Systems Using

Economic Models

by

Harley Boughton

A thesis submitted to the
School of Computing

in conformity with the requirements for the
degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

January, 2006

Copyright © Harley Boughton, 2006

www.manaraa.com

ii

Abstract

A key advantage of Autonomic Computing Systems will be the ability to manage

according to business policies. Implementing this ability is not a trivial problem as there

is little similarity in the metrics used for measuring database performance and business

performance. These translations can be simplified, however, by having a configuration

model that reflects the business policies. Economic models allow for a system that

mirrors the types of policies used to define performance in a business.

One such business policy comes from using Value Based Management [31], in

which a manager is able to define the business units that are most important when it

comes to allocation of capital resources. This concept can be applied to a Database

Management System (DBMS) running multiple workloads corresponding to different

business units. Importance information can be utilized in making resource allocation

decisions, such as allocating buffer space.

In this dissertation, we utilize an economic model to address the buffer pool sizing

problem in DBMSs. We use this context to implement importance as a parameter for

resource allocation. We investigate a number of meanings for importance and identify

how this additional information can best be used in the allocation of main memory.

www.manaraa.com

iii

Acknowledgments

I would like to extend my sincerest thanks to my supervisor, Patrick Martin, for

providing me with this opportunity. I would like to thank him for all his guidance and

advice over the years I have pursued my education and research at Queen’s University.

I would also like to thank Wendy Powley for her support and commitment to the

database research group. She has been a wonderful source of advice and a great sounding

board for the countless challenges encountered throughout the course of this research.

I would like to extend my gratitude to the School of Computing at Queen’s

University for their support. I would also like to acknowledge IBM Canada Ltd. and

CITO for the gracious financial support they have provided.

I would like to acknowledge my lab mates and fellow students who have provided

endless inspiration during my stay at Queen’s University. Similarly, I would like to

thank the students from around the world that I met at the Toronto IBM Center for

Advanced Studies (CAS).

I would like to thank my family and friends for their unwavering support, even

when I moved halfway across the country.

Finally, I would like to express my sincerest appreciation and love to my wife,

Megan, for all her help during these past few years. She was always supportive of my

pursuit of this work, even though it meant a significant delay to the start of our happily

married life together.

www.manaraa.com

iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Equations x

Glossary of Acronyms xi

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Problem 2

1.3 Research Statement 6

1.4 Thesis Organization 7

Chapter 2 Background and Related Work 8

2.1 Autonomic Database Management Systems 8

2.2 Goal-Oriented Multi-Class Resource Allocation 11

2.3 Economies for Computer Resource Allocation 13

2.4 Business Policy Management and Priority 15

Chapter 3 Economic Model 18

3.1 Our Economic Model 19

3.2 Class Agents 22

3.2.1 Utility Function 23

3.2.2 Belady’s Equation 24

www.manaraa.com

v

3.3 Resource Broker 26

3.4 Economic Model Simulator 28

3.5 Model Overhead Analysis 32

Chapter 4 Workload Class Importance Policy 35

4.1 Importance Policy 35

4.2 Degree of Importance 38

4.3 Definition of Importance 39

4.4 Aging Importance 41

Chapter 5 Experimental Analysis 43

5.1 Experimental Environment 43

5.1.1 Methodology 44

5.2 Economic Model Simulator Validation 45

5.2.1 Economic Model Simulator Experimental Validation 46

5.3 Degree of Importance 52

5.3.1 Evaluation Criteria 53

5.3.2 Experimental Results 53

5.4 Definition of Importance 58

5.4.1 Evaluation Criteria 60

5.4.2 Experimental Results 61

Chapter 6 Conclusions and Future Work 71

6.1 Thesis Contributions 71

6.2 Conclusions 73

6.3 Future Work 74

www.manaraa.com

vi

References 76

Appendix A: TPC-C Benchmark 81

Appendix B: TPC-C Transaction Query Details 85

 B.1 New Order 85

 B.2 Payment 86

 B.3 Delivery 87

 B.4 Order Status 88

 B.5 Stock Level 88

www.manaraa.com

vii

List of Tables

Table 3.1 Economic Model Simulator Parameters 31

Table 3.2 Workload Class Importance Policy Parameters 32

Table 5.1 Comparing Expert and Economic Model Buffer Pool Allocations 48

Table 5.2 Resulting Allocations of Different Combinations of Importance 51

Table 5.3 Allocations Used in Determining Multiplier Set 57

Table 5.4 Average Memory Allocations per Class for Each Importance Scheme 66

www.manaraa.com

viii

List of Figures

Figure 1.1 IBM’s 5 Level Autonomic Computing Progression 3

Figure 2.1 Differences between Adaptive and Autonomic Computing 10

Figure 2.2 Sample Utility Curve 14

Figure 3.1 Components of a Basic Economic Model 19

Figure 3.2 Economic Model used for Simulation 20

Figure 3.3 Utility Curve Based on Belady’s Equation 25

Figure 3.4 Memory Broker Auction Algorithm Pseudo Code 27

Figure 3.4 UML Diagram of Economic Model Simulator 29

Figure 4.1 Value Based Management Value Added Cycle 37

Figure 5.1 Comparing Total Physical Reads for Expert and

Simulation Configurations 50

Figure 5.2 Price Differential for Multiplier Sets 54

Figure 5.3 Average Allocation for Multiplier Sets 55

Figure 5.4 Combined Normalized Price Differential and

Average Allocation 56

Figure 5.5 Total Physical Reads for Multiplier Sets 57

Figure 5.6 High Importance Class Hit Rate Results for Non-Preemptive

Scheme using Target 50% and 75% Buffer Pool Hit Rate

 Initial Allocations 62

Figure 5.7 Average Allocation of Normal and Best Effort Classes for

Non-Preemptive Scheme using Target 50% and 75% Buffer Pool

Hit Rate Initial Allocations 62

www.manaraa.com

ix

Figure 5.8 High Importance Class Hit Rates using Target 80%, 90%, and 95%

Buffer Pool Hit Rate Initial Allocations for Preemptive Exempt

High Importance Scheme 64

Figure 5.9 Initial Allocation Versus Total Allocation for High Importance

Class using Target 80%, 90%, and 95% Buffer Pool Hit Rate

Initial Allocations for Preemptive Exempt High Importance Scheme 65

Figure 5.10 Average Hit Rate for High Importance Class using Each

Importance Scheme 66

Figure 5.11 Total Physical Reads Resulting from Each Importance Scheme 67

Figure 5.12 Average Hit Rates for Schemes With Aging Compared to

Without Aging 68

Figure 5.13 Total Physical Reads for Schemes With Aging Compared to

Without Aging 68

Figure 5.14 Combined Normalized High Importance Class Hit Rate and

Total Physical Reads 69

Figure A.1 Frequency of Different Transactions in TPC-C Workload 82

Figure A.2 Database Schema for TPC-C Benchmark 83

www.manaraa.com

x

List of Equations

Equation 3.1 Wealth Assigned to Class Agent 22

Equation 3.2 Maximum Bid Calculation by Class Agent 23

Equation 3.3 Belady’s Hit Rate Estimation Equation 25

Equation 3.4 Solve for b Constant in Belady’s Equation 25

Equation 3.5 Solve for a Constant in Belady’s Equation 25

Equation 3.6 Inverse of Belady’s Equation 26

Equation 3.7 Estimated System Overhead 33

Equation 4.1 Non-Preemptive Importance Scheme Definition 40

Equation 4.2 Preemptive Importance Scheme Definition 40

Equation 4.3 Preemptive Exempting High Importance Scheme Definition 41

www.manaraa.com

xi

Glossary of Acronyms

DBA Database Administrator

DBMS Database Management System

DSS Decision Support System

OLTP Online Transaction Processing

TPC-C Transaction Processing Performance Council Benchmark C

www.manaraa.com

1

Chapter 1

Introduction

1.1 Motivation

Computing systems have become increasingly complex over the last few decades.

This complexity is approaching a point where system administrators and highly skilled IT

professionals, let alone managers with corporate policy decision making approval, are

unable to comprehend all aspects of the system’s day to day performance [19]. This

crisis has been brought to the attention of the computing world through initiatives such as

IBM’s Autonomic Computing. IBM put forth the challenge for all elements of

computing, hardware and software, to become self managed in a method reminiscent of

the human autonomic system [17]. These Autonomic Computing systems should be self-

configuring, self-tuning, self-protecting, and self-healing. The goal is to enable the

system to be managed more directly by business policies. This will allow for those with

decision making authority to have direct control over the computing systems that are a

central part of their business [22].

In particular, Database Management Systems (DBMSs) have become a core

component in most organization’s computing systems. DBMSs are so complex that

many require specialized database administrators (DBAs) to be kept on staff for the day

to day management of the system. According to the US Department of Labor, in 2002,

there were 110,000 DBAs in the United States alone [8]. One of their key roles is tuning

the DBMS so that the system can meet the required IT goals, such as throughput and

www.manaraa.com

2

response time goals. Determining these IT goals from the typical high-level business

policies that govern most organizations is no easy task.

Most management policies are not written in terms of response time and

throughput, but instead they are concerned with measures like revenue and return on

investment (ROI). Additionally, database administrators are typically not involved in

corporate policy decision making and must attempt to translate business policy into low-

level technical requirements for the DBMS. This is a non-trivial exercise as there is little

similarity in the metrics used for measuring database performance and business

performance [2].

1.2 Problem

IBM has proposed a 5 level progression in the development of Autonomic

systems (Figure 1.1) [18]. This progression serves as a guide to developers and details

the milestone steps required to attain Autonomic capabilities. Computing at the Basic

level offers no help to IT administrators who must obtain system data through

independent sources, collate, analyze and decide the proper system administration tasks

on their own. The Managed level introduces system management tools that simplify the

acquisition of system data and provide consolidated reports to ease the analysis and

execution of administrative tasks. Computing systems at the Predictive level introduce

system initiated guidance for IT administrators. These systems are able to self-monitor

and suggest future courses of action. However, the IT administrator is still responsible

for initiating the actions. The final two levels involve systems that are not only self-

monitoring, but self-managing as well.

www.manaraa.com

3

Figure 1.1: IBM’s 5 Level Autonomic Computing Progression [18]

Much of the work that has been accomplished so far within Autonomic

Computing fits into the Adaptive level, which involves creating systems that manage

themselves with respect to some IT-oriented performance goal [11][34][36]. Further

research is concerned with trying to move towards the Autonomic level, which involves

implementing policies that mirror those used by business organizations. This allows for

easy to understand system management policies that do not require specialized IT

knowledge. For example, a high-level business policy may describe the working hours of

www.manaraa.com

4

the organization, such as 9-5, Monday to Friday or 24/7. The difficulty comes in the

implementation and what this policy means to the system. It is a non-trivial exercise to

translate high-level policies into low level implementations. For example, if a policy

specifying business hours is defined, this may signal that the workload after hours is

significantly different and, thus, the system should be tuned accordingly at closing time.

This requires that the system be able to detect and characterize the new workload,

determine how the system tuning parameters need to be changed, and finally be able to

effect the change.

One type of policy that has a great deal of impact on the way in which the DBA

makes decisions is the “importance policy”. This type of policy allows managers to

differentiate the importance of work being done on the DBMS. This becomes more

critical as businesses consolidate workloads of different business units onto a single

DBMS. The importance policy endows the DBA with additional information that can be

used in making configuration decisions. As multiple workloads are consolidated to a

single DBMS, inevitably, these workloads will begin to compete for physical resources,

such as memory and CPU. The importance policy indicates how resources should be

divided among competing workloads.

The buffer pool, for example, is an area of main memory reserved for buffering

data to reduce disk accesses and is a critical factor in database performance [4]. As disk

accesses are significantly slower than memory accesses, the DBA wants to retain as much

data in the buffer pool as possible. This must be accomplished while balancing the need

for additional main memory for other system needs, such as working memory for sorts

and table joins. Determining the size of the buffer pool is typically done by making an

www.manaraa.com

5

initial estimate based on workload and database characterizations and is then refined by

monitoring a number of buffer pool parameters, most notably buffer hit rate. Buffer hit

rate is a key metric in measuring the success of a buffer sizing as it reflects the number of

times a page of data is found in memory as opposed to needing to be retrieved from disk.

This problem is further complicated when multiple buffer pools are involved. There has

been much research done in attempting to automate this process [28].

When confronted with a finite resource that is not sufficient to meet the demands

of all workload classes, the DBA must make a decision to compromise performance for

some work. The additional importance information can assist in making a proper

decision on how to make this compromise. However, determining the proper sizes of

each buffer pool and taking into account multiple importance levels is a complex problem.

A key problem in implementing an importance policy is determining what it

means to say that one workload class is more important than another. When utilized to

make tuning decisions, different interpretations of importance are possible. For example,

a more important class gets access to the resources it needs before a less important class;

an important class can hold resources not in use in anticipation of work to come and an

important class can appropriate resources from less important classes when needed.

Additionally, the degree to which one class is more important than another affects tuning

decisions and is another problem that needs to be addressed when implementing an

importance policy.

One technique that has been used to address this disparity between high-level and

low-level metrics is to introduce an economic model into the low-level system.

www.manaraa.com

6

Economic models have been used in a number of resource allocation problems in

computing with great success [9][12][15][26][29][35].

An economic model for system tuning typically involves a pricing system for

resources. The rules of the system can vary to create the desired system behaviour. Since

the model has an inherent sense of pricing and cost, business policies that express these

ideas can be more easily implemented. The models are easily understood by many of the

business policy makers and do not require the specialized IT knowledge that other

models require. This eases the translation as the low-level system now functions in a

similar manner as many high-level business policies. A system can therefore be managed

directly according to business policies, which is the goal of Autonomic Computing.

1.3 Research Statement

The goal of this research is to investigate how a Workload Class Importance

business policy may be implemented in an Autonomic Database Management System.

The challenge in implementing this policy comes from translating this importance

information into the DBMS. To ease this translation, we utilize an economic model for

resource allocation. Specifically, we investigate this policy in the context of the buffer

pool sizing problem.

We create an economic model representation of the buffer pool sizing problem

and implement the model as an offline simulation. The model is utilized to investigate a

number of possible meanings for importance and identify how this information can be

used to allocate buffer pool memory between competing workloads. These various

www.manaraa.com

7

importance policies are implemented by adjusting various parameters and rules in the

model.

We present experimental results where we look at a three class workload in which

the classes are competing for buffer pool memory. We use the simulation to make

memory allocation decisions for these workloads according to their level of importance

and estimated need for buffer pool space.

The rationale for this project is that it helps make the case for the move towards

“business policy based” Autonomic tuning. Importance policies are one of the most

common examples of a business policy that could be used for tuning. With level 5 of

IBM’s Autonomic Progression explicitly mentioning “business policy” as the driving

force behind decisions, this is a key step.

1.4 Thesis Organization

The remainder of the dissertation is organized as follows. Chapter 2 outlines the

related research conducted in the area of autonomic computing, resource allocation,

economic models, and database workload priority. Chapter 3 describes the economic

model used for allocation of resources. Chapter 4 describes the Workload Class

Importance Policy and its syntax and semantics. Chapter 5 describes the simulator and

presents a set of experiments to verify our approach. The thesis is summarized and future

work is discussed in Chapter 6.

www.manaraa.com

8

Chapter 2

Background and Related Work

This research draws from a number of areas in order to address the problem of

implementing business policy based self-tuning in a Database Management System. This

chapter provides some background information and references previous research in each

of the four main areas addressed by this work. In Section 2.1, we present some previous

work in the area of developing Autonomic Database Management Systems, while

addressing how our work looks to further the progress towards Autonomic Computing.

Section 2.2 looks at work in the field of Goal-Oriented Resource Allocation. It presents

the problem of buffer pool sizing and some previously proposed solutions. Section 2.3

discusses some of the work that has been done using economic models in computing.

Finally, Section 2.4 examines the issue of implementing Priority in computing systems.

2.1 Autonomic Database Management Systems

Since 2001, when IBM introduced their Autonomic Computing Manifesto [17],

there has been great interest in Autonomic Computing within the scientific community.

As computational power has become ever present and cheaper, software designers have

harnessed this power to create ever more feature rich, yet complex, environments.

Additionally, IBM pointed out that the new difficulty in managing computing systems is

that they no longer involve single systems or software environments [22]. Computing

www.manaraa.com

9

systems are increasingly including a number of heterogeneous systems and software

environments, connected both locally and over the Internet.

These monolithic computing environments are approaching the limits of human

capability to understand and manage effectively. Not only is there a crisis of

understanding, but there is also a huge problem with the amount of available skilled IT

staff to manage these systems. Some estimates put the required number of IT staff

required to maintain computer systems globally as high as 200 million [8].

The only viable solution to this crisis requires computing systems to manage

themselves, that is, to take high-level objectives from administrators and handle the low-

level maintenance themselves. Autonomic Computing is a term coined by IBM to

describe technologies for computing systems that are able to self-configure, self-optimize,

self-heal, and self-protect. These are systems that are able to seamlessly install and

configure new hardware and software, strive to continually improve their own

performance, diagnose and repair software and hardware problems, and detect and

protect against malicious attacks [22]. Great strides have been made on a number of

issues key to developing these types of systems. Research on self-tuning DBMSs has

included such topics as index selection [30], materialized view selection [1] and memory

management [7][36].

www.manaraa.com

10

Figure 2.1: Highlighting the difference between Adaptive and Autonomic computing [16]

Referring to Ganek’s and Corbi’s evolution towards Autonomic operation (Figure

2.1) [16], however, much of this work fits into the Adaptive computing level. The key

feature that differentiates Autonomic computing from Adaptive computing is the ability

to manage according to business policies. Whereas the goals used in much previous

work involve IT metrics such as response time or throughput [7][28], there is little work

that directly addresses the issue of managing IT systems according to high-level business

policies [2]. The ability to be managed according to high-level business policies would

allow those business executives who typically form business policy to have more direct

control over computing systems as opposed to requiring IT workers to translate the

business objectives into IT objectives.

Our work is directly concerned with the implementation of business policies in an

attempt to achieve the Autonomic computing level. We augment an automated resource

allocation method to implement the concept of priority to reflect an importance policy

based on Value Based Management.

www.manaraa.com

11

2.2 Goal-Oriented Multi-Class Resource Allocation

Resource allocation is a key challenge in computing. How to determine

allocations of resources to various applications on a computing system can be

accomplished in a number of ways. Historically, much of the work done with regards to

DBMS resource allocation involved optimizing system wide performance, while more

recent work separates the workload into classes that share some commonality [5].

Traditionally, database workloads are categorized into one of two categories:

Online Transaction Processing (OLTP) or Decision Support Systems (DSS). DBAs

would use tuning strategies specific to how similar their workload was to an OLTP or

DSS workload. However, as more enterprises consolidate their databases to a single

DBMS, the resulting workload becomes a mix of the two types [6]. The combination of

short running transactions and long running decision support queries creates a workload

whose resource consumption and execution time is hard to predict [6]. Thus, many

solutions involve segregating portions of the workload and allocating resources to each

class as the resource requirements for a class can be better understood. Instead of trying

to optimize overall system allocations, a DBA can optimize the allocation of each class

and achieve an overall system optimization [7].

One of the most important resources in determining system performance is

memory management [4]. There are a number of parameters that a DBA must tune when

optimizing memory management, but one of the most common is determining the size of

the buffer area. The buffer area is a portion of memory that the DBMS reserves for

caching pages read from disk. By having the appropriate pages in the buffer area, the

DBMS can greatly reduce the data access time for executing queries. The easiest way to

www.manaraa.com

12

ensure that the proper pages are in the buffer area is to have a very large buffer area so

that an increased number of disk pages are kept in memory. However, main memory is a

finite resource and allocating more memory for the buffer area results in reduced space

for other DBMS needs such as working space for sorting and joining data.

Another method to optimize the buffer area is to recognize that different database

objects are accessed according to different patterns. For example, indexes and data tables

that are read sequentially are typically accessed in different patterns [36]. One way to

deal with this is to logically separate the buffer area into separate buffer pools where page

replacement is local to each buffer pool, and assign database objects with similar access

patterns to the same buffer pool.

There are a number of rules-of-thumb that DBAs traditionally utilize in defining

buffer pools [36]. These rules-of-thumb are used by DBAs to address two problems, the

buffer pool configuration problem and the buffer pool sizing problem. The buffer pool

configuration problem involves determining how many buffer pools are necessary and

which database objects belong in each. For this work, we look at the buffer pool sizing

problem. The buffer pool sizing problem involves finding the optimal allocations of

memory for a set of buffer pools so that the best possible database performance is

achieved [28]. However, previous work examines this problem from the perspective of

the database objects as opposed to multi-class workloads with separate buffer pools

assigned to workload classes.

This work examines the buffer pool sizing problem in the case where multiple

workload classes run concurrently on the same DBMS, with a separate buffer pool

assigned to each class. Our research further builds upon the class model by introducing

www.manaraa.com

13

importance information into the resource allocation problem. As opposed to attempting

to optimize each class to an equal degree, we use class importance to give priority to

optimizing some classes more than others.

2.3 Economies for Computer Resource Allocation

Human economies are designed to handle the large scale distribution of a near

infinite number of goods among just as many agents. Their scale far exceeds what is

likely to be encountered in dealing with resource allocation in a computing system.

However, the benefit for computing is that, along with developing over centuries, they

have been studied just as long. There is a wealth of knowledge, theories, equations,

algorithms, and models that have been used to explain the actions within human

economies that can be reused or adapted to resource allocation in computing.

Many researchers have found a number of key tools and benefits that economic

models can bring to the resource allocation problem in computing systems [12][15][26].

These include utility functions to describe consumer allocation preferences in a concise

mathematical formula [32], decentralization through the use of multiple brokers and

agents, and largely scalable resource allocation solutions [15].

 Utility, as used in economics, describes an amount of happiness or satisfaction

gained from consumption of an allocation of a commodity. A utility function is a

mapping of this satisfaction to various allocations of the commodity. In terms of

computing resources, utility can be thought of as a measure of usefulness. When an

agent is given an allocation of a resource, such as disk space, main memory, or CPU time,

there is a certain amount of usefulness that is obtained. A utility function (Figure 2.2)

www.manaraa.com

14

would then provide a mapping between all allocations of that resource and the usefulness

the agent would achieve.

Figure 2.2: Sample utility curve

These functions can usually be expressed as mathematical formulas and

combining these functions into multi-dimensional utility functions for a number of

commodities allows one to find an allocation of a number of resources to best satisfy an

agent [32]. Even with this very understandable application to computer resource

allocation problems, the study of the practical applications of utility functions in

computing is still fairly new [32]. Our work examines a utility function used by a

database workload class to determine the usefulness of an allocation of buffer pool space.

Economic models typically contain suppliers and consumers that exchange goods.

There are many different ways to implement this, with each implementation providing

certain features to accomplish a specific goal [9]. Using wealth and auctions creates a

transparent decision making process for allocations [26] and, if certain conditions are met

provide an efficient convergence to a Pareto optimal resource allocation [35]. Pareto

www.manaraa.com

15

optimality implies that no individual’s utility can be improved without diminishing the

utility of others. This is a very desirable quality for the solutions provided by an

economic model.

Through the use of brokers and agents, decentralization of the resource allocation

decision is achieved. Brokers and agents need not have any knowledge of the overall

system state. Brokers look only to maximize their profit for selling resources, while

consumer agents are only concerned with maximizing their own utility [15].

Additionally, if the utility functions are monotone, smooth, and convex, this competitive

system will lead to a Pareto optimal solution.

We implement a basic economic model in our work to represent resource

allocation in a Database Management System. We use this simulator as a solution to the

buffer pool sizing problem. We then utilize the model to implement an importance

policy and view its effects on the buffer pool allocations suggested by the model.

2.4 Business Policy Management and Priority

Although researchers have been pursuing Autonomic Computing for a number of

years, there is very little research that examines self-tuning systems guided by business

policies [2]. Most research is concerned with optimizing traditional IT metrics. However,

as stated previously, it is very difficult to directly translate many business policies into

traditional IT measures of performance. By using an economic model for resource

allocation, we attempt to bridge the gap between IT measures and business metrics such

as profit and return on investment.

www.manaraa.com

16

One business policy of particular interest is that of an importance policy. Such a

policy would be useful in organizations utilizing management ideas such as Strategic

Business Unit (SBU) Valuation that comes from Value Based Management [31]. By

determining a valuation for an SBU, managers utilizing tools such as the McKinsey

matrix [33] are able to determine the appropriate SBU to which new capital should be

assigned. In a situation where computing infrastructure is shared among these business

units, one can readily see how an importance policy could translate to some sort of

priority for computing resources. We attempt to implement such an importance policy

within our economic model framework.

Trying to incorporate importance/priority information into the resource allocation

decision has been a topic of research for sometime now. In relation to DBMSs, much of

the work on using priority information has focused on scheduling queries [10]. Previous

research on using priority to manage physical resources in a DBMS has attempted to

transfer ideas of priority from other computing resources such as CPU scheduling and

buffer management [10]. However, there are a number of issues not addressed, such as

the degree of difference in importance between various levels of priority and what

priority should mean in resource allocation.

Recent work in utilizing priority information has focused on “real-time database

systems” (RDBMS) [13]. Priority information is typically used as additional information

for making different decisions, such as CPU scheduling or concurrency conflict

resolution. However, RDBMSs are typically interested in allocating resources for

individual queries to meet specific deadlines as opposed to adjusting for class-based

www.manaraa.com

17

performance goals. Additionally, most priority schemes are based on adjusting schedules

through some sort of admission control policy.

In our work, we look at the implementation of importance in a DBMS in the

context of the buffer pool sizing problem. We examine a number of definitions of what

importance information should mean in terms of resource allocation. We also experiment

to determine the degree to which a high-priority class should be more important than a

low-priority class. Using an economic model, this is accomplished through simple rule

changes such as how wealth is allocated and how auctions are conducted.

www.manaraa.com

18

Chapter 3

Economic Model

Economic models used for resource allocation vary significantly from

implementation to implementation, usually based on differing goals. They range from

simple models designed for low overhead costs to much more sophisticated models

designed to emulate an intelligent system [9][15][26][29][35].

All economic models for resource allocation consist of four basic elements,

namely a supplier, consumers, resources and a mechanism for trade, as shown in Figure

3.1. Typically, economic models are concerned with the case where there are a limited

number of suppliers and many consumers. This competitive model adapts itself well to

resource allocation problems where resources are limited. In every economic model

resources are supplied to consumers through some sort of trading mechanism. Most often,

this mechanism involves representative money used by consumers to obtain the supplied

resource [12]. Using auctions as the mechanism for trade provides a well understood

decision making process with easy to trace results.

www.manaraa.com

19

Figure 3.1: Components of an economic model

3.1 Our Economic Model

For the purposes of this dissertation, we develop an economic model to represent

the buffer pool sizing problem. We utilize an instance of the model consisting of three

consumer agents and a single broker. The resource being supplied is a finite amount of

buffer pool memory pages. The broker is responsible for allocating buffer pool space to

the consumer agents. The agents represent three OLTP workloads running

simultaneously on the DBMS. The consumer agents are each assigned wealth based on

the estimate of the work they must complete. The resource broker conducts auctions of

memory page blocks to sell them to the consumer agents. The consumer agents each

www.manaraa.com

20

have an associated utility function used to determine the maximum amount of wealth

they are willing to spend for the block of memory pages currently for auction. The

agents submit this value as a sealed-bid to the resource broker who selects the highest bid

as the winner and assigns the resource accordingly. This continues until all resources

have been allocated or no consumer agent desires more resources.

Figure 3.2: Economic model used for simulation

www.manaraa.com

21

This economic model in Figure 3.2 represents a slightly different version of the

buffer pool sizing problem. Typically, the buffer pools are associated with the database

itself, not the user workloads. The various database objects, such as tables and indices

are divided into buffer pools depending on access patterns and sizes and appropriate

buffer pool sizes must be determined for these sets of objects. Our model, however, takes

a more user-centric approach. We assume that each class of work or workload on the

DBMS is assigned its own amount of buffer pool space. Currently, an object to buffer

pool mapping is a many-to-one relationship (a buffer pool may contain many objects

while an object may only be contained in a single buffer pool) [36]. With a move

towards a service oriented architecture that involves the DBMS being used by various

users as a service, being able to define an amount of buffer memory for each user will be

useful. Thus, we use this alternative model of the buffer pool sizing problem to

determine the appropriate amount of buffer pool memory for each consumer class agent.

This basic economic model is used for evaluating the appropriateness of an

economic model as a solution for the buffer pool sizing problem. The minimal feature set

of this model allows for implementing the importance policies desired, while allowing

transparent decisions that can easily be interpreted [35].

www.manaraa.com

22

3.2 Class Agents

For the purposes of this work, a workload class is a subset of the workload

running on a DBMS that shares some user-defined commonality. A class could be

defined as all work originating from a specific user id, such as that of a CEO, or it could

be defined based on the type of work it represents, such as after hours reporting jobs.

These classes of work are defined by users so that they can receive some sort of

differentiated treatment. In the context of this model, classes are defined according to

their importance level; all work in a given class has the same level of importance. In our

economic model, we use three example classes. Each of these classes has an associated

workload that runs on the DBMS.

Consumer agents are defined and represent each class running on the DBMS in

the model. The agents are assigned an amount of wealth based on an estimate of the

amount of work they are representing. The wealth of a class agent, in this economic

model, is a metaphor for monetary currency. This estimate is obtained using the

estimated number of I/O operations for each query as given by the DB2 EXPLAIN utility.

For a workload W that contains n queries qi per resource allocation interval, each with an

I/O estimate est(qi), the initial amount of wealth assigned to the class agent c would be:

∑
=

=
n

i
iqestcWealth

1

)()(Equation 3.1

The agent uses this wealth to “purchase” the resources it needs to complete the work for

which it is responsible.

These agents are also given the ability to evaluate the utility of a resource

allocation using an assigned utility function. They use the marginal utility (the difference

www.manaraa.com

23

in utility between two allocations) calculated using the utility function to determine their

maximum bid. The maximum bid is the marginal utility multiplied by the agent’s current

wealth. Thus, if a class agent c has a current resource allocation of x buffer pool pages

and y additional pages were available for bid, the bid submitted by class agent c, Bid(c),

would be:

)())()(()(cWealthxUtilityyxUtilitycBid ×−+= Equation 3.2

This provides reasonable bids of a percentage of their wealth that matches the estimated

percentage increase in performance. For example, if a class agent calculated that winning

the current auction would provide a 10% increase in performance, the agent would be

willing to spend 10% of its wealth to purchase that resource.

3.2.1 Utility Function

The class agents create a preference curve for their designated resource based on

the workload queued to be completed. In this economic model, this utility curve is a

representation of the usefulness of an allocation of buffer pool memory. As the key

metric in evaluating buffer pool performance is typically hit rate, we use a hit rate

estimation curve as the utility function for these class agents. This allows us to use the

marginal increase in hit rate as the marginal utility for a given allocation of buffer pool

memory.

We can also use the utility function in reverse. This allows us to find an

estimated buffer pool size to achieve a desired hit rate. We use this functionality to pre-

assign buffer pool space to guarantee a minimum level of performance.

www.manaraa.com

24

The marginal utility is the difference in utility between two different allocations.

In this economic model, since the utility functions represent the relationship between

buffer pool size and buffer pool hit rate, the utility will always increase with an increase

in buffer pool size. However, due to the diminishing returns of buffer pool size increases

on hit rate, the marginal utility will always decrease. This will provide the desired

behaviour in the model so that class agents will spend on resources to a point where the

marginal benefit does not outweigh the cost.

This monotonic decreasing utility curve in a competitive model will also allow us

to achieve a Pareto-optimal allocation as described in Chapter 2.3

3.2.2 Belady’s Equation

For our economic model, we have chosen to use Belady’s equation [3] as a hit

rate estimator. This equation provides a hit rate estimate for a given allocation by using

only two sample points. These sample points consist of a buffer pool size and hit rate

pair. Thus, by running the workload with two different buffer pool sizes and measuring

the hit rate, we can use Belady’s equation to estimate the hit rate of alternative sizes.

Furthermore, if we assume that the buffer pool access pattern for a given workload does

not vary over time, we can use two trial samples, early in a workload’s execution, to

provide us with a hit rate estimator useful for dynamic resizing of the buffer pool over the

course of the remaining workload. If a workload class is defined by something such as a

business application using a set of predefined queries or an order entry department, this

assumption is valid.

www.manaraa.com

25

For any buffer pool of size S, Belady’s equation allows us to estimate the hit rate

HR(S) as:

bSaSHR ×−= 1)(Equation 3.3

 The constants a and b are calculated using the sample points. Once HR(S1) and

HR(S2) have been collected for buffer pool sizes S1 and S2, we can use the following

equations to solve for a and b:

)ln()ln(
))(1ln())(1ln(

12

12

SS
SHRSHRb

−
−−−

= Equation 3.4

)ln(
1

1

))(1
Sbe
SHRa ×

−
= Equation 3.5

 Once we have a and b for a given workload, we can solve Belady’s equation and

use it as a hit rate estimator. This provides a curve similar to what is seen in Figure 3.3.

Sample Belady's Equation Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Buffer Pool Size in Pages

Hi
t R

at
e

E
st

im
at

e

Figure 3.3: Sample curve formed by Belady’s equation

www.manaraa.com

26

Since hit rate is typically the most important factor in determining an appropriate

buffer pool size, we use the hit rate as a measure of utility. For example, if increasing the

buffer pool by 100 pages of memory would increase the hit rate from 65% to 70%, we

would state that the 100 pages of memory had a marginal utility of 5%.

We can also use the inverse of Belady’s equation to estimate the necessary buffer

pool size to meet a target hit rate. The inverse function to solve for size S given HR(S) is:

b

a
SHRS −−

=))(1(Equation 3.6

 These simple equations provide the class agents with an efficient way to estimate

their utility for a given allocation of buffer pool memory and determine their maximum

bids accordingly.

3.3 Resource Broker

The broker is responsible for administering the auctions. The auctions used in

this model are sealed-bid auctions, where agents submit their maximum bid and the

broker selects the highest bid as the winner. As an agent wins auctions, it gains resources

but loses wealth. They are, therefore, less likely to bid on additional resources as they

give up wealth and thus allow other classes with less wealth and resources the chance to

win resources. The main memory is divided into blocks of memory pages. Agents make

bids based on their utility function curves until they have sufficient resources, insufficient

wealth, or all resources have been claimed. The specific protocol for how the auctions

www.manaraa.com

27

function affects the method in which resources are allocated. We use this to implement

different definitions of importance, which is discussed in the next chapter.

Auctions are held at predefined intervals, where class agents bid on the resources

available using their assigned wealth. The resource broker in this economic model

simply coordinates these auctions. However, in more complex models, the brokers can,

in turn, try to maximize their own desired resource, wealth. These brokers measure

demand and try to maximize the price at which they sell resources. In our basic model,

though, the way in which the resource broker maximizes profit is by selling all available

resources in each auction period.

The process that the broker follows in allocating resources is as follows (Figure

3.4):

While unallocated pages > 0 and number of bidders > 0{
Determine number of memory pages, y, for auction{

 If unallocated memory pages > pageBlockSize
 y = pageBlockSize
 Else y = unallocated memory pages}

Solicit bids from class agents{
 For each class agent
 Get bid(c)}

If number of bidders > 0 {
Determine max bid

 Allocate y to highest bidder
 Charge highest bidder bid(c) for allocation

Unallocated pages -= y}
}

Figure 3.4: Memory Broker auction algorithm pseudo code

This process is repeated at the beginning of each interval to determine the buffer pool

allocations to be used for the interval.

www.manaraa.com

28

3.4 Economic Model Simulator

As implementing an economic model for resource allocation within the IBM DB2

Universal Database (DB2 UDB) [21] engine is outside the scope of this work, we have

implemented a simulator to make the resource allocation decisions. The simulator is an

implementation of the economic model representing the buffer pool sizing problem. The

simulator was created using the Java programming system. The simulator is

implemented as shown in the UML diagram presented in Figure 3.4. The Simulator class

contains the main method and controls the simulation.

www.manaraa.com

29

Figure 3.5: UML description of Economic Model Simulator classes

www.manaraa.com

30

As inputs, the Simulator takes three SQL workload script files. These workload

files are augmented with the estimated runtime and the estimated number of I/O

operations for each query as obtained using the DB2 EXPLPAIN utility. As output, the

Simulator provides a list of buffer pool sizes for each workload at each specified interval.

For the purposes of this work, we also output the cost for each class to purchase the

allocated resources along with the amount of wealth they retained.

The Simulator creates a ClassAgent object for each workload provided. It also

initializes a Broker object to act as the memory broker. The ClassAgents determine the

queries that are executed in the first interval as specified by the Simulator. Once they

have determined the queries that are applicable, they calculate the sum of the estimated

I/O operations and report this to the Simulator. The Simulator uses this value to

determine the wealth assigned to each ClassAgent for the interval. Once wealth is

assigned to all ClassAgents, the Simulator allows the Broker to begin the allocation

process. The broker determines the number of memory pages for auction and elicits bids

from each of the ClassAgents. The Broker assigns the memory pages to the ClassAgent

that submits the highest-bid and charges them for the amount of the bid. This auction

process ends when there are no remaining memory pages, the ClassAgents have no

remaining wealth, or the ClassAgents to not desire any more memory pages. At this

point, the Broker submits a Transaction containing the AuctionResult to the Simulator

and the Simulator advances to the next interval. Once all intervals are completed, the

Simulator outputs the resulting schedule of allocations. The parameters used for

adjusting the simulation of the economic model are shown in Table 3.1.

www.manaraa.com

31

Name Type Description
interval int Specifies the number of queries per interval
memPages int Specifies the total number of memory pages

for the broker to allocate
pageBlockSize int Specifies the number of memory pages available

Per auction
class1A double The calculated A value for class 1 utility function
class1B double The calculated B value for class 1 utility function
class2A double The calculated A value for class 2 utility function
class2B double The calculated B value for class 2 utility function
class3A double The calculated A value for class 3 utility function
class3B double The calculated B value for class 3 utility function

Table 3.1: Economic model simulator parameters.

For this work, the values for a and b needed to solve Belady’s equation (used as

the utility function) were pre-calculated by running the workload with different buffer

pool sizes as we had a pre-specified workload script. However, this could easily be done

online by adjusting the buffer pool size for two time intervals and recording the results, or

offline by using a number of very accurate offline hit rate estimators that analyze the

workload [28].

The remaining parameters are used for implementing the various possible

Workload Class Importance Policies described in the next chapter. They are shown in

Table 3.2.

www.manaraa.com

32

Name Type Description
preemptive boolean Specifies whether the importance scheme is

Preemptive or non-preemptive
exemptImportant boolean Specifies whether the Exempt Important

importance scheme is used
aging boolean Specifies whether priority aging is used
minHitrate double A parameter used for pre-allocation in the

non-preemptive importance schemes
exemptImportantHitrate double A parameter used for pre-allocation in the

Exempt Important scheme
importantMultiplier double Wealth multiplier for High Importance classes
normalMultiplier double Wealth multiplier for Normal Importance classes
bestEffortMultiplier double Wealth multiplier for Best Effort classes

Table 3.2: Workload Class Importance Policy parameters

In Chapter 4, these parameters, their effect on the execution of the simulation, and

their implementation details are described. The settings for these parameters for the

experiments are presented in Chapter 5.

3.5 Model Overhead Analysis

 In this section, we discuss the impact this model would have when implemented

in a modern DBMS. As implementation of this model into IBM’s DB2/UDB is beyond

the scope of this work, experimentation to determine the overhead introduced into the

system is not possible. However, an examination of the complexity of the algorithm

provides some indication.

The auction algorithm presented, the sealed-bid auction, is one of least complex

trade mechanisms available. For a specified interval, Ik, the Broker initiates m auctions

where m = memPages/pageBlockSize. The Broker must then obtain bids from n

ClassAgents. To compute these bids, each ClassAgent must calculate the marginal utility

www.manaraa.com

33

for the currently available memory pages using Belady’s equation. We denote the time

taken for this calculation as Tutil. Thus, the equation to estimate overhead introduced into

the system is in Equation 3.5.

∑
=

××
k

I
utilTnm

1
 Equation 3.7

The number of ClassAgents, representing concurrent workloads on the DBMS,

should never reach a very large value for n so the overhead of the auction mechanism is

mostly dependant on m. We found however, due to the diminishing returns nature of

buffer pool hit rates, having a small pageBlockSize does not benefit the model as the

marginal utility of only a few pages of memory is typically very low. Thus, the

granularity of the resource allocation process does not benefit from being too fine and m

should be a small value as well. Finally, since the utility function is based on a single

equation, the time to calculate the value of marginal utility, Tutil, will be small. Thus, this

model, used for a single resource and utilizing Belady’s equation for a utility function

will introduce little overhead to the system. However, if the model were expanded to

multiple resources, the ClassAgent calculations would be more intensive and the number

of resource auctions would increase.

The most significant overhead will come from the frequency at which this

allocation takes place. At each interval, the model will execute m resource auctions and n

resource reallocations. However, the granularity of the model determines its

responsiveness as an autonomic system. We use a constant interval that is fairly course-

grained (10,000 queries). A finer-grained interval would allow the system to adapt to

changing demands more quickly at the cost of increasing the overhead.

www.manaraa.com

34

Currently, the model runs very quickly compared to the total execution time of the

workloads, but without being able to implement this in a DBMS, we are unable to

accurately characterize the impact on the system. This model uses a minimal amount of

statistics from the DBMS and uses a minimal set of economic functionality. Further

research will need to be conducted to determine how an expanded economic model, using

multiple resources and allowing consumers to choose between resources, would affect the

overhead for the DBMS.

www.manaraa.com

35

Chapter 4

Workload Class Importance Policy

This research addresses two key problems in implementing an “importance

policy” in a self-tuning Database Management System. These two key problems are the

degree of importance that a high-importance class has compared to a low-importance

class and what being an important class means in terms of how resources are allocated,

definition of importance. In this section, we describe the questions these two problems

raise and our proposed solutions. We define possible scenarios for solutions and, in the

next section, provide experimental data to evaluate the best solutions.

4.1 Importance Policy

One important aspect of Value Based Management is the ability to quantify the

value of business units. Using tools such as the McKinsey or GE matrix [31], an

enterprise is able to measure the value of various strategic business units. This valuation

can be used to, for example, determine where newly acquired capital should be utilized or,

in other words, which are the most important business units in terms of resource

allocation. This directly relates to the resource model developed in the previous chapter.

In the economic model previously discussed, multiple workload classes are competing for

limited resources, just as business units compete for capital in an enterprise. Using the

valuation ideas of Value Based Management, one could determine importance labels to

be applied to the various workload classes in the economic model in the case where the

www.manaraa.com

36

class agents each represent a business unit. A combination of these labels defines an

importance policy for the system.

The importance policy examined in this work involves assigning one of three

importance levels to each workload class running on the DBMS. We use the labels

“High Importance”, “Normal Importance”, and “Best Effort”.

A class that is “High Importance” should demonstrate some priority over classes

that have “Normal Importance” or “Best Effort” importance. In a consolidated enterprise

system, this “High Importance” label could, for example, be applied to a class of work

representing an OLTP-like order entry department as this work is directly revenue

generating or a class of work corresponding to queries entered by the company CEO and

considered most important. The “Normal Importance” label would likely apply to all

other business related workloads such as an HR department that will run reports that they

need during business hours, but have a lower priority than business units directly

affecting revenue. Finally, the “Best Effort” label would be applied to classes of

transactions that do not have any strict deadline, such as background DBMS maintenance

work or after hours reporting queries.

These three levels, we believe, provide a reasonable scenario for implementing

importance in the DBMS. These three labels allow, in addition to normal workloads, a

way to both raise and lower the importance of workloads on the DBMS. A discrete

labeling system is also preferential to a continuous value describing importance as it is

much easier to make decisions choosing the appropriate level for a class from a small

number of well defined importance levels. A larger enterprise may require more levels of

discretion for various classes of work. Additional levels of importance could be added to

www.manaraa.com

37

the system, however, some experimentation to determine their degree of importance, as

defined below, would be necessary.

Figure 4.1: Value Based Management Value Added Cycle

Using this Workload Class Importance Policy to tune the DBMS according to the

importance of the various business units can help organizations to increase their value

according to principles of Value Based Management [31]. By improving the

performance of important business units, the enterprise will improve the user satisfaction

for users of the important workloads without additional investment in resources. This

will help to further increase the value of these strategic business units. This leads to the

cycle shown in figure 4.1.

Using Value Based Management tools, an enterprise is able to determine

importance labels for different workloads on the DBMS. The DBMS will tune resources

according to these labels using the economic model presented in chapter 3. This will

result in the important workload classes being able achieve an increase in performance,

www.manaraa.com

38

leading to increased user satisfaction. Increasing user satisfaction is one way in which an

enterprise can add value [31]. This increase in value is then taken into account when re-

evaluating the value of strategic business units. This iterative cycle will help enterprises

refine their critical IT operations without the need for specifying low-level system

requirements.

4.2 Degree of Importance

A key problem in implementing different levels of importance is how to

differentiate between the levels. This involves determining how much more important

one level is than another. The values are especially important when using the importance

levels in low-level resource allocation decisions. In this work, we determine appropriate

weights for the importance levels through experimentation with the economic model.

Each consumer agent in the economic model is responsible for a workload. An

estimate of the amount of work to complete (obtained by using the sum of the estimated

number of I/O operations per query using the DB2 Explain utility) is used to determine

the wealth awarded to the agent for the current allocation interval, where all work is

considered equal. This is then multiplied by an “importance multiplier” to enforce a

degree of importance. For example, an agent with a “High” degree of importance may

have a multiplier of 3.0, while an agent with a “Best Effort” degree of importance may

have a multiplier of only 1.0. By adjusting these multipliers, we affect the amount that

one class is more important than another by affecting their ability to outbid other classes

for resources. In our experiments, we look at the impact of a range of values for these

multipliers.

www.manaraa.com

39

The numbers selected for experimentation consist of a number of combinations of

weights to represent different sets of degrees. In all experiments, the Best Effort class is

given a multiplier of 1.0. We experiment with weights for the High Importance class that

are similar to the Best Effort class (such as 3.0) and weights that represent a significant

increase (such as 10.0), as well as middle values (5.0 and 6.0). For the Normal class, we

try values that range between the Best Effort multiplier and the High Importance

multiplier (2.0 and 5.0). These combinations of degrees allow us to examine how the

relative importance of the different classes affects both individual class resource

allocations and overall system performance.

4.3 Definition of Importance

Paramount in implementing importance in the DBMS is defining what importance

means. This definition describes the differences in entitlements and abilities between a

higher-priority and lower-priority class.

For this work, we are concerned with defining what importance means with

regard to resource allocation. We therefore base our definition on the entitlement one

class has to resources compared to other classes. We present three definitions of

importance that we experiment with using our economic model simulation. They

represent two classical definitions of priority, namely non-preemptive and preemptive

priority [10] as well as a variation on the preemptive model where High Importance

classes are exempt from preemption.

The first definition of importance states that all classes are entitled to their

minimum necessary resource allocation. Additional resources available in the system are

www.manaraa.com

40

more likely to be assigned to important classes. This represents a non-preemptive model.

All classes are able to complete some work during an interval, with any additional

resources being used to improve the performance of important work. This allows us to

provide a minimum guaranteed level of performance. In our economic model, this is

accomplished by pre-allocating the minimum required resources to each class before the

auctions begin. However, if the total resources available are less than the sum of the

minimum allocations, we then scale the allocations according to their ratio of the total

resources requested. To calculate the minimum required resources, we pick a target

buffer pool performance level and use the class’s utility curve to calculate the necessary

resource allocation to meet that hit rate. Thus, for a given workload class c, where

Guarantee(c) is the calculated minimum resources pre-allocated, then:

Importance(c))()(cGuaranteecAllocation ≥≡ Equation 4.1

In our experiments, we try both a 50% and 75% target buffer pool hit rate to determine

the minimum resource requirement and guaranteed minimum hit rate.

The second definition of importance states that the requirements of important

classes should be satisfied before those of less important classes. Important classes may

be allocated all resources in the system such that less important classes must wait until

resources are made available. This definition represents a preemptive priority model.

For the economic model simulation, this means that all resources are auctioned to the

highest bidding class through the competitive mechanism. For a given workload class c,

then:

Importance(c) 0)(≥≡ cAllocation Equation 4.2

www.manaraa.com

41

The final definition of importance guarantees a high level of performance to High

Importance classes and allows other classes to compete for remaining resources. The

purpose of this importance scheme is to address the possibility of a lower-importance

class preempting the High Importance class. Similar to the non-preemptive scheme, we

implement this in the economic model by a pre-allocation of resources to the High

Importance class. The pre-allocated resource amount is based on a high level of

performance for the class buffer pool. For a given workload class c, with a minimum hit

rate guaranteed by a pre-allocated amount of buffer pool pages Guarantee(c), then:

Importance(c) ccGuaranteecAllocation ∀≥≡)()(where Importance(c)=High Importance

Importance(c) ccAllocation ∀≥≡ 0)(where Importance(c)={Normal, Best Effort}

 Equation 4.3

In our experiments, we try a target hit rate of 80%, 90%, and 95% and use the class’s

utility curve to determine the necessary resource allocation to meet those targets.

4.4 Aging Importance

Allowing priorities to age is another interesting aspect of an importance policy

that we chose to examine in this work. Aging involves gradually incrementing the

priority of objects over time. This is commonly used to prevent starvation in CPU-

scheduling so that lower-priority processes are not blocked indefinitely by a steady

stream of higher-priority jobs [25]. This is particularly relevant to our preemptive-style

importance policy definition. This allows a lower importance class to eventually

overcome the preemption of the High Importance class.

www.manaraa.com

42

In this work, aging involves allowing a class to better compete for resources the

longer the workload has been running. To implement this in the economic model, we

allow classes to accumulate the wealth they do not spend in previous allocation periods.

Thus, if a class is preempted, it will have twice the wealth in the next allocation period

and be better able to compete against other classes that have likely expended all their

wealth in the previous period. For the non-aging schemes, classes do not carry over any

wealth that is unspent.

In our experiments, we utilize the economic model simulation to implement each

of the various schemes described. We experiment with a number of sets of degrees of

importance. We also implement each of the described definitions of importance.

Additionally, we use each of these with and without aging. The economic model allows

us to implement each of these through simple rule and parameter changes. We also

experiment to determine which of these schemes provides the best Workload Class

Importance Policy. The policy should provide a clear benefit to High Importance classes

while mitigating the overall impact on the system.

www.manaraa.com

43

Chapter 5

Experimental Analysis

We describe the experimental environment in Section 5.1. We present

experiments to show the validity of our economic model simulation as a method for

buffer pool allocation in Section 5.2. Section 5.3 discusses degree of importance and

presents experimental results supporting the degrees chosen for experimentation. In

Section 5.4, we experiment with different definitions of importance to determine the most

useful definition for buffer pool memory allocation.

5.1 Experimental Environment

For our experiments, we use IBM’s DB2 Universal Database version 8.2 [21]

running on an IBM xSeries 240 PC server with the Windows XP operating system [23].

The server is equipped with two 1 GHz Pentium 3 processors, 2 GB of RAM and an array

of 22 disks.

We use a single instance of the DBMS with three identical databases. The

databases are TPC-C like and each contains 10 GB of data. As an object to buffer pool

mapping is a many-to-one relationship (a buffer pool may contain many objects while an

object may only be contained in a single buffer pool) [31], we use the three separate

databases to allow each workload to have its own buffer pool while still having access to

all database objects.

www.manaraa.com

44

The economic model simulation was created using the Eclipse IDE [14] and Java

1.4.2 [27]. It was implemented as described in Chapter 3. It is run on a standard desktop

computer.

5.1.1 Methodology

We generated three OLTP type workload scripts, each consisting of 120,000

queries based on the 5 different transactions of the TPC-C benchmark (see Appendix A).

The workloads are similar, however, the order and proportions of the transactions vary

slightly. This is done to provide workloads with slightly varying resource needs. The

workloads are divided into 12 segments of 10,000 queries each to provide us with

uniform points at which to resize the buffer pools. This provides us with a consolidated

workload reminiscent of a single organization with three business units running separate

OLTP type workloads simultaneously against different sets of tables within the same

database.

The workloads are entered as input to the economic model simulator, which

produces a list of allocations at each of the checkpoints. At each segment checkpoint in

the workload script, the buffer pool size is modified using the ALTER BUFFERPOOL

statement with the IMMEDIATE keyword [20].

The IMMEDIATE keyword, when used in the ALTER BUFFERPOOL statement,

allows for dynamic resizing of the buffer pools without starting and stopping the DBMS.

When the command is used to increase the size of a buffer pool, additional memory pages

are simply added from the database shared memory. If the size is decreased, pages are

released from the LRU (least recently used) queue [24], which is a list of pages that can

www.manaraa.com

45

be made available for reading in new data from disk. The dynamic resizing of the buffer

pool selects the best candidate pages to be released first in order to minimize disk

accesses. We assume that DB2 dynamically resizes the buffer pools with the least

possible impact.

Once the allocations have been determined by the simulation, they are entered in

the workload scripts, the databases are restored to their initial state. The workloads are

then run concurrently while we monitor the buffer pools throughout execution and collect

statistics at each segment checkpoint. We record the number of logical and physical

reads for data and indexes for each of the three buffer pools. This data is used to

calculate the hit rates for each segment of the workloads.

5.2 Economic Model Simulator Validation

 The first set of experiments was conducted to determine the validity of the

economic model as a method for resource allocation. We begin by determining an

appropriate maximum amount of available buffer pool memory for the three buffer pools.

We also determine the granularity for the allocation of memory pages. The values of a

and b are determined for each of the workload class agent’s utility functions. We then

determine a manual allocation of buffer pool memory to each of the three buffer pools.

Due to the time consuming nature of calculating the manual configuration, it results in a

static configuration based on the entire duration of the workloads. The simulator,

however, is able to produce a dynamic allocation schedule. We examine the model’s

ability to allocate resources both with and without Workload Class Importance Policy

labels. Finally, we compare the simulation’s results for the model not using importance

www.manaraa.com

46

information to the manual configuration to determine its effectiveness at producing

allocations. This comparison uses the total number of physical reads generated by all of

the workloads. A physical read occurs when the workload requires a page of information,

either an index or data page, and that page is not available in the buffer cache. Thus, the

system is forced to read that data from the hard disk, which is a typically time consuming

operation. Therefore, the lower the number of physical reads the system must make, the

better overall system performance will be achieved.

5.2.1 Economic Model Simulator Experimental Results

We begin by determining two key parameters for the simulation, memPages and

pageBlockSize. To determine the total amount of memory available, the workloads were

run concurrently with a minimal amount of buffer pool space (500 4KB pages for each

buffer pool) and again at a much higher size (20,000 buffer pool pages each). With the

smaller size, the average hit rate for the three workloads was 78.82% and with the larger

size the average was 97.46%. Using these results, we estimated the requirements to

achieve a 95% average hit rate using Belady’s equation for all three workloads. We then

rounded this number up to 32,768 4KB memory pages for a total of 128 MB of available

buffer pool memory. With this amount of resources, an even allocation to all workloads

should give a 95% hit rate and if a single class agent appropriates all resources, it would

be able to achieve a hit rate near 97.5%.

We then tested the effects of using different sizes for pageBlockSize. This

parameter is the number of memory pages available in each auction. This affects the

level of fine-tuning to which class agents can obtain resources. Using a block size of 50

www.manaraa.com

47

pages not only increases the number of auctions that are held for each allocation period,

but the marginal utility calculated by the class agents was so low that they quit bidding

very early. Page block sizes of 100 pages and 500 pages were also tried. We found that

using a course granularity of 500 pages or greater did not allow classes to approach the

maximum performance level for their wealth because they could be up to 499 memory

pages below their ideal allocation. We settled on using a page block size of 100 pages as

it provided a balance of refinement for the allocations and a large enough marginal utility

for class agents, using the utility functions we’ve defined, to make accurate bidding

decisions.

The values of a and b were determined by using the buffer pool performance

results for a buffer pool of 500 pages and of 20,000 pages from the previous experiments.

Using the equations presented in Chapter 3, values for a and b were obtained for each

class agent.

For the all of the remaining experiments presented in this work, we set the

memPages parameter to 32, 768 and the pageBlockSize parameter to 100. Similarly, the

values of a and b for each class agent are constant for all of the experiments presented in

this work. Only the parameters affecting the Workload Class Importance Policy are

altered and these settings are discussed for each experiment.

To show the validity of this approach to resource allocation, we first manually

determine an allocation. This manual allocation does not take into account importance,

but tries to maximize the hit rate for each buffer pool while minimizing the overall

number of physical disk accesses. This allocation was arrived at by using an initial

estimate based on the workload characteristics and the comparative needs of the three

www.manaraa.com

48

workloads. The DBMS was then configured to use this initial allocation. The buffer

pool performance was monitored and the allocations were refined. This refinement

continued until all workloads exhibited similar performance and the total number of

physical reads reached a minimal value. This resulted in the allocation shown in Table

5.1.

Allocations int 1 int 2 int 3 int 4 int 5 int 6 int 7 int 8 int 9 int 10 int 11 int 12

Manual

Class 1 9980 9980 9980 9980 9980 9980 9980 9980 9980 9980 9980 9980

Class 2 11389 11389 11389 11389 11389 11389 11389 11389 11389 11389 11389 11389

Class 3 11399 11399 11399 11399 11399 11399 11399 11399 11399 11399 11399 11399

Preemptive w/
Aging

Class 1 11368 11300 11200 11200 11168 11400 11300 11268 11200 11200 11300 11368

Class 2 10800 10868 10800 10668 10600 10500 10800 10600 10600 10700 10868 10700

Class 3 10600 10600 10768 10900 11000 10868 10668 10900 10968 10868 10600 10700

Preemptive w/o
 Aging

Class 1 11368 11200 11100 11100 11068 11400 11200 11168 11100 11100 11268 11300

Class 2 10800 10900 10800 10600 10600 10500 10968 10600 10668 10800 10900 10768

Class 3 10600 10668 10868 11068 11100 10868 10600 11000 11000 10868 10600 10700

Table 5.1: Comparing manual buffer pool allocations to results of economic model

We then use the economic model simulator to provide a set of allocations with all

classes at an equal level of priority. We ran the simulation using the preemptive model

(all resources allocated through competition) since it is the purest form of the economic

model. We tested both with and without aging to see if there were any significant

differences at this point. For these tests, all classes were labeled as Normal Importance.

www.manaraa.com

49

However, running the simulation with all classes at the same level of importance should

provide the same resulting allocations regardless of whether they are all at High

Importance, Normal, or Best Effort.

The resulting allocations are different from those of the manual configuration as

they demonstrate two different methods for reaching a similar goal. Whereas the manual

configuration gave Class 1 the lowest allocation, the economic model consistently

allocates the largest amount of buffer pool space to Class 1. This is due to the initial

estimate, the starting point, used by the manual configuration. Although, through the

refinement phase, the amount of memory assigned to Class 1 increased, the goal hit rates

were reached before the allocation to Class 1 exceeded the other class allocations. In the

economic model simulation, all classes start at the same point, there is no initial estimate.

We ran each of the resulting workload scripts on the test system using the

allocations in Table 5.1. The configurations were each run three times and the results

presented below are an average of the three runs. The resulting number of physical reads

from the three runs showed a variation of less than 0.3% from the mean. This low

variation is expected as the workload scripts are identical for each test run. We compare

the resulting allocations of the simulator and the manual allocation.

www.manaraa.com

50

Number of Physical Reads

33559 32778 32612

26593 27450 27290

26386 26949 26692

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Manual Preemptive w/ Aging Preemptive w/o Aging

Allocation Method

Ph
ys

ic
al

 R
ea

ds

Workload 3
Workload 2
Workload 1

Figure 5.1: Total number of physical reads for configurations suggested by manual configuration

and simulation

The two simulator allocations resulted in performance very similar to that of the

manual static allocation. As seen in Figure 5.1, the total number of physical reads is

similar for each of the configurations.

With no importance levels set, it appears that the economic model simulation

provides configurations resulting in similar performance. Thus, we can assume that the

economic model simulation will provide us with an adequate buffer pool space allocation

system.

The next experiments involved running the economic model simulation with a

number of different combinations of importance. As the workloads all have similar

www.manaraa.com

51

resource needs, when run with different combinations of importance labels, a correct

allocation will show a High Importance class to receive a large portion of the allocation,

while a Best Effort class will receive a low allocation. Each of these runs is done using

the Preemptive model without Aging (by setting parameters preemptive = true and aging

= false) so as to provide the purest example of the economic model at work. This results

in all allocations being done through competition and the results of the previous interval

does not affect future intervals. Some sample results are presented in Table 5.2.

Allocations int 1 Int 2 int 3 int 4 int 5 int 6 int 7 int 8 int 9 int 10 int 11 int 12

Class 1 – High 15400 15300 15268 15300 15300 15500 15368 15368 15368 15268 15300 15400

Class 2 - Normal 13068 13100 13100 12968 12900 12768 13000 12900 12900 13000 13100 12968

Class 3 – Best 4300 4368 4400 4500 4568 4500 4400 4500 4500 4500 4368 4400

Class 1 - High 14668 14568 14468 14568 14568 14800 14600 14600 14600 14500 14600 14668

Class 2 - High 14000 14100 14100 13900 13900 13700 14000 13900 13868 14000 14068 13900

Class 3 – Best 4100 4100 4200 4300 4300 4268 4168 4268 4300 4268 4100 4200

Class 1 – Best 5000 5000 5000 5000 4968 5100 5000 5000 5000 5000 5068 5100

Class 2 - Normal 14000 14068 13900 13700 13700 13600 13968 13768 13668 13800 14000 13868

Class 3 - Normal 13768 13700 13868 14068 14100 14068 13800 14000 14100 13968 13700 13800

Table 5.2: Allocation results from different combinations of importance labels using simulator

As can be seen in these allocations, workloads with similar importance levels

receive similar allocations. Additionally, as there are fewer High Importance classes, the

Best Effort classes receive higher allocations. All of the allocations are as we expected,

thus confirming that the model simulator is able to allocate buffer pages appropriately

according to importance levels. However, these results are with the (1.0, 2.0, 3.0)

www.manaraa.com

52

multiplier set (by setting the following parameter values: importantMultiplier = 3.0,

normalMultiplier = 2.0, and bestEffortMultiplier = 1.0), so we must still experiment to

determine that these are correct degrees of importance for each importance level. This is

shown in Section 5.3.

5.3 Degree of Importance

When implementing an importance policy, the degree to which one class is more

important than another is a key problem. We experiment, using our economic model

simulation, to determine the proper degree of difference for the various priority levels.

The model examines three different importance levels: High Importance, Normal, and

Best Effort.

The degrees of importance are implemented through multipliers for the wealth

assigned to a class; a higher importance class will have a higher multiplier, giving the

class more total wealth with which to purchase resources and be able to outbid

competitors. In all experiments, the Best Effort class is given a multiplier of 1.0. This is

reasonable, since a Best Effort class should only be able to acquire resources if there is no

other higher importance class that desires them. Thus, a Best Effort class will only be

able to pay a minimum price for resources. We try a number of other multipliers for the

High and Normal importance classes.

www.manaraa.com

53

5.3.1 Evaluation Criteria

A proper Importance scheme within an economic model will provide the highest

price difference between what the high priority class is paying for resources compared to

the lower priority classes. This will demonstrate that the high priority classes are able to

purchase the resources needed before the lower priority classes. However, this is

mitigated by the need to cause the lowest increase in the number of physical reads for the

lower priority classes so that overall system performance is impacted as little as possible.

Since hit rate is proportional to buffer space allocation, we look for the highest average

allocation for the normal priority and best effort classes. Thus, we look for the best

combination of these two metrics:

• Price Differential: the difference in average price paid for resources between high

priority and best effort classes, a higher value is better.

• Average Allocation: The average number of buffer pool pages allocated to the

normal priority and best effort classes, a higher value is better.

The results for each metric are normalized with respect to the mean for that metric and

then combined into a single metric to show the best combination of the two.

5.3.2 Experimental Results

We tried five different sets of multipliers. In order of Best Effort, Normal, and

High Importance, the sets were: (1.0, 2.0, 3.0), (1.0, 2.0, 5.0), (1.0, 2.0, 10.0), (1.0, 5.0,

6.0), and (1.0, 5.0, 10.0). These represent a number of different relative differences in

www.manaraa.com

54

importance, such as High Importance being similar to Best Effort or very much preferred,

and Normal Importance spanning the range from Best Effort to High Importance. We

test these parameter settings using the Preemptive model of importance with and without

Aging.

The results of the simulation for these different sets of multipliers provided two

sets that performed better than the others according to our criteria of price differential and

average allocation (Figures 5.2 and 5.3).

Price Differential

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1.2.3 1.2.5 1.2.10 1.5.6 1.5.10

Multiplier Set

Pe
rc

en
ta

ge
 D

iff
er

en
ce

Figure 5.2: Price Differential between High Importance and Best Effort classes for different

multiplier sets

www.manaraa.com

55

Average Allocation

0.00
1000.00

2000.00
3000.00
4000.00
5000.00

6000.00
7000.00
8000.00

9000.00
10000.00

1.2.3 1.2.5 1.2.10 1.5.6 1.5.10

Multiplier Set

A
ve

ra
ge

 A
llo

ca
tio

n

Figure 5.3: Average Allocation awarded to Normal and Best Effort classes using different multiplier

sets

From the Figures, we see that the fourth set (1.0, 5.0, 6.0) scored best in average

allocation while the fifth set (1.0, 5.0, 10.0) provided the best price differential. When

we normalize the multiplier set metrics and combine them into a single score we see a

clear leader as seen in Figure 5.4.

www.manaraa.com

56

Combined Normalized Price Differential and Average
Allocation Rank

-9.06%

19.18%

15.94%

-23.33%

-2.73%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1.2.3 1.2.5 1.2.10 1.5.6 1.5.10

Multiplier Set

%
 D

iff
er

en
ce

 F
ro

m
 M

ea
n

Figure 5.4: Combined normalized price differential and average allocation rank

The fourth set (1.0, 5.0, 6.0) provides the best combination of our two desired

metrics. We further experimented to compare these two candidates (the fourth and fifth

sets) and ran the different allocations (Table 5.3) on our test system to find their resulting

total number of physical reads, with the lowest number indicating the best multiplier set

(Figure 5.5).

www.manaraa.com

57

Allocations int 1 int 2 int 3 int 4 int 5 int 6 int 7 int 8 int 9 int 10 int 11 int 12

1.5.6

High Importance 15400 15300 15268 15300 15300 15500 15368 15368 15368 15268 15300 15400

Normal Importance 13068 13100 13100 12968 12900 12768 13000 12900 12900 13000 13100 12968

Best Effort 4300 4368 4400 4500 4568 4500 4400 4500 4500 4500 4368 4400

1.5.10

High Importance 18200 18100 18068 18068 18068 18300 18100 18100 18100 18068 18100 18200

Normal Importance 10968 11000 11000 10900 10900 10700 10968 10868 10868 10900 10968 10868

Best Effort 3600 3668 3700 3800 3800 3768 3700 3800 3800 3800 3700 3700

Table 5.3: Allocations used for determining multiplier set

Physical Reads

81992

86811

79000

80000

81000

82000

83000

84000

85000

86000

87000

88000

1.5.6 1.5.10
Multiplier Set

Figure 5.5: Total physical reads on test system using best candidate multiplier sets

www.manaraa.com

58

We found that when run using our test set up, the set of (1.0, 5.0, 6.0) resulted in

5.55% fewer physical reads than (1.0, 5.0, 10.0). Thus, we selected (1.0, 5.0, 6.0) as our

multiplier set for our further experiments in implementing an importance policy.

Although these specific multipliers may be specific to these experiments, there are rules-

of-thumb that can be observed from these results.

• The Best Effort class should have a multiplier of one to ensure that it is not able to

be allocated resources at anything but the minimum price.

• The High Importance class should have a significantly higher multiplier than the

Best Effort class to ensure that it has the wealth to purchase resources and reach

its desired allocation before other classes.

• The Normal Importance class should have a multiplier similar to that of the High

Importance class so that its overall impact on the system is mitigated by a higher

average allocation, resulting in a lower total number of physical reads.

5.4 Definition of Importance

The second key problem in implementing a Workload Class Importance Policy is

defining what importance means. Traditionally, in computing, there are two

implementations of priority: preemptive and non-preemptive. In a preemptive scheme,

one agent can commandeer all resources, preventing others from executing. A non-

preemptive scheme, on the other hand, does not allow one class to prevent others from

executing. Additionally, these schemes have been augmented with Aging. That is, as an

agent is forced to wait for the resources it needs, its ability to compete for buffer pool

memory is increased.

www.manaraa.com

59

We investigate a number of definitions of importance, as explained in Chapter 4.

These include:

• Preemptive: In a preemptive scheme, one class may appropriate all resources

preempting the execution of others.

• Non-Preemptive: In the non-preemptive scheme, a minimum amount of resources

are guaranteed to all classes.

• Preemptive exempting High Importance: In this scheme, we pre-allocate the

resources the high priority class needs and use a preemptive model for the

remaining resources. This guarantees a level of performance only for important

classes.

The two importance schemes that offer an initial allocation of memory also

required additional experimentation to determine the appropriate initial allocation. For

the Non-Preemptive schemes, we looked for a minimum value that would allow every

class agent to achieve a modest buffer pool hit rate. We try initial allocations targeting a

50% and a 75% buffer pool hit rate for each class agent. The allocation is determined

using the inverse of Belady’s equation for each class agent. This is meant to act as a

guaranteed minimum level of performance for all workload classes.

For the High Importance exempt Preemptive scheme, we try to provide a high

level of performance to the High Importance classes while still allowing some resources

to be available to less important classes. We select initial allocations targeting 80%, 90%

and 95% buffer pool hit rates for the High Importance classes while the less important

classes receive no initial allocation. This ensures that the High Importance classes do not

www.manaraa.com

60

have their performance impacted by a lower importance class with a large amount of

wealth.

In both of these schemes, the class agents are charged appropriately for these

allocations according to their amount of wealth. As stated in Chapter 3, a class agent pays

a corresponding percentage of its wealth for a corresponding hit rate. Thus, an initial

allocation targeting a 50% buffer pool hit rate would cost 50% of a class agent’s wealth.

This allows for classes to still participate in the economy, however, they have less wealth

and will likely be able to win fewer auctions as a penalty for their being granted a

minimum performance. This removes the competitive advantage of having a pre-

allocated amount of memory. If the classes were not charged and they were pre-allocated

a significant amount of memory, they would be able to still make large bids for resources

they normally could not afford.

We examine each of these importance schemes with and without Aging. Aging is

implemented in the economic model simulation by allowing class agents to accumulate

wealth. In the non-aging schemes, class agents do not carry over any unspent wealth

from segment to segment.

5.4.1 Evaluation Criteria

To evaluate the effectiveness of the importance schemes, we examine two criteria.

First, we want an importance scheme that provides the highest benefit to the classes

designated as High Importance. This will be evident by the hit rate that is achieved from

the allocations provided by the simulation. The hit rate is the percentage of the time when

a requested page of information, either an index page or data page, is found in the buffer

www.manaraa.com

61

cache. This is a common measure of the performance of a single buffer. A higher hit rate

is better.

Secondly, we want to provide this benefit to important classes with as little effect

on the rest of the system as possible. Thus, we also look at the total number of physical

reads recorded by the system for each importance scheme as in Section 5.2 and 5.3.

Again, a lower score is better for total physical reads. We claim that the scheme that can

provide the best combination of these two criteria provides us the most beneficial

definition of importance when looking at allocating buffer pool space.

5.4.2 Experimental Results

For the following experiments, we continue to use memPages = 32,768 and

pageBlockSize = 100. The values of a and b for each class agent are the same as

determined in Section 5.2. Every result showing buffer pool performance statistics, such

as hit rate and physical reads, presents of an average of three runs on the test setup.

We first experiment to determine the initial allocations in the Non-Preemptive and

High Importance Exempt schemes. We begin with the Non-Preemptive scheme (set

parameter preemptive = false), with and without Aging, at an initial allocation targeting

50% and 75% buffer pool hit rates for each class agent to determine the proper value for

the minHitrate parameter. The results are as shown in Figures 5.6 and 5.7.

www.manaraa.com

62

High Importance Hit Rate

0.955

0.956

0.957

0.958

0.959

0.96

W/o Aging - 75%
Target

W/o Aging - 50%
Target

W/ Aging - 75% Target W/ Aging - 50% Target

Figure 5.6: Hit rate of High Importance class using target 50% and 75% buffer pool hit rate initial

allocations for Non-preemptive scheme

Average Allocation Normal-Best Effort

8500

8600

8700

8800

8900

9000

9100

W/o Aging - 75%
Target

W/o Aging - 50%
Target

W/ Aging - 75%
Target

W/ Aging - 50%
Target

Bu
ffe

r
P

oo
l P

ag
es

Figure 5.7: Average allocation of Normal and Best Effort classes using target 50% and 75% buffer

pool hit rate initial allocations for Non-preemptive scheme

www.manaraa.com

63

As shown in Figure 5.6, the initial allocation has little effect on the hit rate

achieved by the High Importance class. This is due to the High Importance class agent’s

ability to acquire additional resources. However, there is a noticeable difference in the

average allocations of the Normal and Best Effort classes. Using an initial allocation

targeting 75% hit rate results in a higher average allocation for the two lower importance

classes. This will result in a lower number of total physical reads due to the diminishing

returns nature of the relationship between buffer pool size and hit rate. By reallocating

memory from the High Importance class to the less important classes, the increase in

physical reads for the High Importance class is more than offset by the decrease in

physical reads for the lower importance classes. Thus, we use a 75% target for the initial

allocation (set parameter minHitrate = 0.75) in the following experiments.

Similarly, we examine three initial allocations for the High Importance Exempt

scheme to determine the proper setting for the exemptImportantHitrate parameter. They

are initial allocations targeting 80%, 90%, and 95% buffer pool hit rates. Again, these

initial allocations are calculated using the inverse of Belady’s equation. As shown in

Figure 5.8, we see the best hit rates are achieved by the 80% and 95% allocations.

www.manaraa.com

64

High Importance Class Hit Rate

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.954

W/o Aging
- 80%
Target

W/o Aging
- 90%
Target

W/o Aging
- 95%
Target

W/ Aging -
80%

Target

W/ Aging -
90%

Target

W/ Aging -
95%

Target

Figure 5.8: High Importance class hit rates achieved using target 80%, 90%, and 95% buffer pool hit

rate initial allocations for Preemptive exempt High Importance scheme

However, when looking at the allocations received by the High Importance class

under each of these schemes, we see that, under the 80% scheme the class must still

compete for most of its allocation (Figure 5.9) to achieve this high hit rate.

www.manaraa.com

65

Resources Acquired

595 2519

10658

595 2519

10658
11618 6837

0

10925 5925

0

0

2000

4000

6000

8000

10000

12000

14000

W/o Aging -
80% Target

W/o Aging -
90% Target

W/o Aging -
95% Target

W/ Aging -
80% Target

W/ Aging -
90% Target

W/ Aging -
95% Target

Importance Scheme

Figure 5.9: Initial allocation versus total allocation under each scheme (darker portion is initial

allocation, lighter portion represents resources won through competition)

As is shown, with the target 80% hit rate initial allocation, the High Importance

class is very dependant on winning resources through competition for its performance.

This is not a desired quality as another class could acquire those resources. The target

95% buffer pool hit rate initial allocation scheme gives a High Importance class the

resources it needs so that it can maintain a very high hit rate without needing to compete

for resources. This the property that we desire for the initial allocation, so the target 95%

buffer pool hit rate initial allocation for the High Importance class (set parameter

exemptImportantHitrate = 0.95) is used in all further experiments. This allows us to

guarantee a high-level of performance without being dependant on the ability to compete

for resources. This will help to prevent the High Importance classes from being

preempted.

www.manaraa.com

66

We began the experiments by running each importance scheme in simulation. We

then ran the resulting allocations (Table 5.4) on our test set up three times, recording both

hit rates and physical reads. Figures 5.10 and 5.11 present the average results.

Average
Allocations

Non-Preemptive
w/ Aging

Non-Preemptive
w/o Aging

High Exempt
w/ Aging

High Exempt
w/o Aging

Preemptive
w/ Age

Preemptive
w/o Aging

High
Importance 14990 15015 10658 10658 15345 15281

Normal
Importance 13408 13259 16497 16523 12981 13070

Best Effort 4515 4494 5613 5588 4442 4417
Table 5.4: Average memory allocations for each Importance scheme suggested by Simulation

High Importance Class Average Hit Rate

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

Non-
Preemptive
w/ Aging

Non-
Preemptive
w/o Aging

High
Exempt w/

Aging

High
Exempt w/o

Aging

Preemptive
w/ Age

Preemptive
w/o Aging

Importance Scheme

H
it

Ra
te

Figure 5.10: Average hit rate for High Importance classes using each importance scheme

www.manaraa.com

67

Total Physical Reads

95000

95500

96000

96500

97000

97500

98000

Non-Preemptive
w / Aging

Non-Preemptive
w /o Aging

High Exempt w /
Aging

High Exempt
w /o Aging

Preemptive w /
Age

Preemptive w /o
Aging

Importance Scheme

Ph
ys

ic
al

 R
ea

ds

Figure 5.11: Total physical reads recorded using each importance scheme

We first examined the difference between schemes with and without Aging. In

general, we see a lower hit rate for the High Importance classes when Aging is involved.

We also see a lower total number of physical reads in schemes that include Aging

(Figures 5.12 and 5.13).

www.manaraa.com

68

Aging vs. Non-Aging Hit Rate

95.00%

95.10%

95.20%

95.30%

95.40%

95.50%

Aging Non-Aging

H
ig

h
Im

po
rt

an
ce

 H
it

R
at

e

Figure 5.12: Comparing average hit rates for Importance schemes with and without Aging

Aging vs. Non-Aging Physical Reads

96500

96550

96600

96650

96700

96750

96800

96850

96900

96950

97000

Aging Non-Aging

To
ta

l P
hy

si
ca

l R
ea

ds

Figure 5.13: Comparing average physical reads for Importance schemes with and without Aging

As can be seen from Figures 5.12 and 5.13, there is no clearly better scheme.

However, the results of implementing Aging do seem to create a slight moderating effect,

www.manaraa.com

69

as should be expected. Aging was implemented to allow lower importance classes to

eventually be more competitive. In some intervals the lower importance class agents will

be winning resources away from the High Importance class. Due to the diminishing

returns nature of the relationship between buffer pool size and buffer pool hit rate, this

will lower the hit rate of the High Importance class. However, the increase in physical

reads incurred by the High Importance class will be more than offset by the decrease in

physical reads for the other classes as their hit rates increase.

Figure 5.14, shows each of the different importance schemes normalized and

combined scores in the two metrics. Since we want a higher hit rate for the High

Importance class and a lower total number of physical reads across all classes, a

combined score closest to zero provides the best balance of the criteria.

Combined Normalized High Importance Class Hit Rate and
Total Physical Reads Ranking

0.07%
0.15%

-0.63%
-0.54%

0.45%0.51%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

Non-
Preemptive w /

Aging

Non-
Preemptive
w /o Aging

High Exempt
w / Aging

High Exempt
w /o Aging

Preemptive w /
Age

Preemptive
w /o Aging

Importance Scheme

%
 D

iff
er

en
ce

 F
ro

m
 M

ea
n

Figure 5.14: Combined normalized High Importance Class hit rate and total physical reads ranking

www.manaraa.com

70

When looking at each scheme and their performance when we normalize the

metrics, we see that the Non-Preemptive schemes provide the best balance of the two

criteria. Semantically, this scheme would indicate that all workload classes can be

guaranteed a minimum level of performance, while High Importance classes will be able

to reach a significantly higher level and overall system performance is impacted as little

as possible. Through a basic economic model, this scheme can be achieved in an

automated fashion through simple rules of wealth assignment and trade. By assigning

wealth based on the estimated number of I/O operations, by pre-allocating resources and

charging a minimal amount for them, and by allowing any additional resources to be

allocated through a competitive auction system, we were able to implement this

importance scheme using our economic model.

www.manaraa.com

71

Chapter 6

Conclusions and Future Work

To progress to the Autonomic stage, Adaptive computing systems must be guided

by business policies. However, many of these business policies do not directly translate

to metrics used for computer system performance. In this thesis, we present the use of an

economic model to bridge the gap between these different metrics. The model is built to

represent the buffer pool memory allocation problem in database management systems.

We then utilize this model to investigate the implementation of a Workload Class

Importance Policy. The model is implemented as an offline simulation to test the

performance of a number of different possible importance policies. Section 6.1

summarizes the contributions of this thesis, while Section 6.2 presents conclusions based

on our experiments. Finally, Section 6.3 suggests some direction for future work.

6.1 Thesis Contributions

This thesis examines some of the difficulties in implementing business policy

guided Autonomic computing. We identify the translation of typical business policy

metrics to computing system performance metrics as a key challenge. As a solution, we

suggest and implement an economic model for resource allocation. We use this

economic model in simulation to address the buffer pool sizing problem to test the

model’s validity. Finally, we use this model and simulation to address the difficulties in

implementing a Workload Class Importance Policy.

www.manaraa.com

72

We develop an economic model that contains consumer agents that each

represents a different workload running on a single DBMS. These agents are each

assigned a utility function that is used to determine the desired allocation of resources.

The model also contains a broker that is responsible for allocating the resource through a

sealed-bid auction process.

This model is developed into an offline simulation representing the buffer pool

sizing problem. A single broker is responsible for distributing buffer pool memory to the

various consumer agents representing concurrent workloads on the DBMS. Consumer

agents are provided a workload, a utility function, and wealth. Through a series of

auctions, the consumers obtain the required buffer pool memory from the broker. The

simulation presents the results as a series of memory allocations at checkpoints in the

workloads. To validate the model, we compare the resulting allocations of the simulation

with those of a manual configuration.

We use the economic model simulator to implement a Workload Class

Importance Policy. The model allows us to implement a number of possible importance

policies by varying the way in which wealth is allocated to the class agents and the rules

of resource allocation followed by the broker. We experiment with each of the different

importance schemes and select the one that provides the best performance for the most

important classes while still providing a high level of system wide optimization.

www.manaraa.com

73

6.2 Conclusions

Based on our experimentation, we can conclude:

• The basic economic model used in this work provides an adequate method of

allocating buffer pool space. The results achieved are very similar to that of the

manual configuration. The added benefits of decentralization, automation, and

simple consumer agents make the economic model an interesting approach to

utilize for resource allocation.

• The economic model greatly eases the implementation of a Workload Class

Importance Policy. Through minor rule and parameter changes, we are able to

implement a variety of possible importance policies.

• Non-Preemptive importance schemes provide the best balance of a relatively high

hit rate for important classes and a low number of system-wide physical reads

mitigating overall system impact. Due to the diminishing returns relationship

between buffer pool size and hit rate, giving the initial allocation to the low

importance classes provides a greater decrease in the total number of physical

reads than allowing the high importance class to win these additional pages and

achieve a higher hit rate.

• The degree of importance that provided the best results involved a large

differential between the High Importance class and the Best Effort class while

having a small differential between the High Importance class and the Normal

Importance class.

www.manaraa.com

74

• Aging importance schemes consistently give a lower average hit rate for the high

importance class compared to the same importance scheme without aging, while

resulting in a lower number of physical reads system wide. The schemes using

aging allow the lower importance classes to appropriate some of the resources

from the higher importance classes on occasion. This is again due to the

relationship between buffer pool size and hit rate.

6.3 Future Work

There are a number of interesting avenues of future research suggested by this

work. Some of the most interesting are:

• Refining the economic model. Although we use Belady’s equation as a hit rate

estimator for our utility curve, there has been work done suggesting alternative hit

rate estimators [28]. Implementing these as utility curves could provide differing

results. As well, alternative trade mechanisms, such as reverse auctions could be

investigated as they have been used in other economic models with success.

• Extending the economic model. Future work would look at expanding the model

to allocate multiple resources by adding additional brokers and to allow classes to

trade-off between the various resources by utilizing multiple utility functions.

Additionally, more economic features, such as a futures market, could be added to

allow for agents to choose when to execute to maximize performance for a given

budget. This would be especially useful in a system where the wealth of a class

represents a real-world budget.

www.manaraa.com

75

• Implementing additional business policies. Policies such as an Operating Costs

policy could be implemented where the broker can only lend out resources in

accordance with the costs it incurs for the resource to run, i.e. if using an

additional disk drive costs x dollars and the client is willing to spend y dollars, the

broker will only sell the resource if y >= x. This would be useful in guiding

systems towards profit maximization.

Economic models provide a very interesting avenue of study for resource allocation

problems in Autonomic Computing. Although this research has been underway for some

time now [12], it has yet to make much impact in commercial products. However, when

taking into consideration the ease with which most business policies translate into

economic terms and that business policy guidance is a key feature of Autonomic

Computing, these systems should gain additional interest.

www.manaraa.com

76

References

1. Agrawal, S., Chaudhuri, S. and Narasayya, V. (2000). “Automated Selection of

Materialized Views and Indexes,” Proceedings of the 2000 International Conference on

Very Large Databases, Cairo, Egypt.

2. Aiber, S., Gilat, D., Landau, A., Razinkov, N., Sela, A., and Wasserkrug, S. (2004).

“Autonomic Self-optimization According to Business Objectives”. Proceedings of the

International Conference on Autonomic Computing, 206-213.

3. Belady, L. (1966). “A Study of Replacement Algorithms for Virtual Storage”.

Computer, IBM System Journal, 5(2), July, 78-101.

4. Brown, K.P, Carey, M.J. and Livny, M. (1993). “Managing Memory to Meet

Multiclass Workload Response Time Goals”. Proceedings of the 1993 International

Conference on Very Large Databases, Dublin, Ireland, 328-341.

5. Brown, K.P., Mehta, M., Carey, M. J., and Livny, M. (1994). “Towards Automated

Performance Tuning For Complex Workloads”. Proceedings of the 1994 International

Conference on Very Large Databases, 72-84.

6. Brown, K. P. (1995). Goal Oriented Memory Allocation in Database Management

Systems. PhD thesis, University of Wisconsin-Madison.

7. Brown, K.P., Carey, M.J. and Livny, M. (1996). “Goal-Oriented Buffer Management

Revisited”, Proceedings of the 1996 Association for Computing Machinery Special

Interest Group on Management of Data, 353-364.

www.manaraa.com

77

8. Bureau of Labor Statistics, U.S. Department of Labor. (2005). Occupational Outlook

Handbook, 2004-05 Edition, Computer Systems Analysts, Database Administrators, and

Computer Scientists. Retrieved August 31, 2005 from

http://www.bls.gov/oco/ocos042.htm

9. Buyya, R., Abramson, D., Giddy, J. and Stockinger, H. (2002). “Economic Models for

Resource Management and Scheduling in Grid Computing”. Special Issue on Grid

Computing Environments, The Journal of Concurrency and Computation: Practice and

Experience (CCPE), Wiley Press, USA, 14(13-15), 1507-1542.

10. Carey, M.J., Jauhari, R. and Livny, M. (1989). “Priority in DBMS Resource

Scheduling”. Proceedings of the 1989 International Conference on Very Large

Databases, 397-410.

11. Chaudhuri, S., & Weikum, G. (2000). “Rethinking Database System Architecture:

Towards a Self-tuning RISC-style Database Architecture”. Proceedings of the 2000

International Conference on Very Large Databases, Cairo, Egypt.

12. Cheliotis, G. and Kenyon, C. (2003). “Autonomic Economics: Why Self-Managed e-

Business Systems Will Talk Money”. IEEE International Conference on E-Commerce,

2003. CEC 2003, 120-127.

13. Datta, A., Son, S. H., and Kumar, V. (1999). “Is a Bird in the Hand Worth More

than Two in the Bush? Limitations of Priority Cognizance in Conflict Resolution for

Firm Real-Time Database Systems”. IEEE Transactions on Computers 49(5), 482-502.

14. Eclipse Foundation (2005). “Eclipse.org Main Page”. Retrieved October 30, 2005

from http://www.eclipse.org/

www.manaraa.com

78

15. Ferguson, D. F., Nikolaou, C., Sairamesh, J., and Yemini, Y. (1996). “Economic

Models for Allocating Resources in Computer Systems”. In Scott Clearwater, editor,

Market-Based Control: A Paradigm for Distributed Resource Allocation, Scott

Clearwater. World Scientific, Hong Kong

16. Ganek, A.G. and Corbi, T.A. (2003). “The Dawning of the Autonomic Computing

Era”. IBM Systems Journal 42(1), 5 – 18.

17. IBM (2001). “Autonomic Computing: IBM’s Perspective on the State of Information

Technology”. Retrieved January 31, 2005 from

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

18. IBM (2002). “Autonomic computing and IBM”. Retrieved March 14, 2005, 2005,

from http://www-03.ibm.com/autonomic/pdfs/AC_BrochureFinal.pdf.

19. IBM (2005). “The Problem”. Autonomic Computing Overview, retrieved March 12,

2005, from http://www.research.ibm.com/autonomic/overview/problem.html.

20. IBM (2005). “Alter Bufferpool Statement”. Retrieved October 30, 2005 from

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc

/admin/r0000885.htm

21. IBM (2005). “IBM Software – DB2 Universal Database for Linux, UNIX and

Windows – Product Overview”. Retrieved October 30, 2005 from http://www-

306.ibm.com/software/data/db2/udb/

22. Kephart, J.O., Chess, D.M. (2003). “The Vision of Autonomic Computing”. IEEE

Computer, 36(1):41–52.

23. Microsoft (2005). “Windows XP Home Page”. Retrieved October 30, 2005 from

http://www.microsoft.com/windowsxp/default.mspx

www.manaraa.com

79

24. Mullins, C.S. (2003). “The Buffer Pool: Dynamic Buffer Changes and Partitioned

Access”. International DB2 Users Group Solutions Journal, 10(1).

25. Siberschatz, A., Galvin, P.B., and Gagne, G. (2003). Operating System Concepts. 6th

ed. John Wiley & Sons, Inc., U.S.A.

26. Stratford, N. and Mortier, R. (1999). “An Economic Approach to Adaptive Resource

Management”. Proceedings of the Seventh Workshop on Hot Topics in Operating

Systems, 142-148.

27. Sun Microsystems, Inc. (2005). “Java 2 Platform, Standard Edition (J2SE) 1.4.2”.

Retrieved October 30, 2005 from http://java.sun.com/j2se/1.4.2/index.jsp

28. Tian, W., Martin, P. and Powley, W. (2003). “Techniques for Automatically Sizing

Multiple Buffer Pools in DB2”. Proceedings of Center of Advanced Studies Conference

(CASCON), Toronto, Canada, 294-302.

29. Tucker, P. (1998). Market Mechanisms in a Programmed System. Department of

Computer Science and Engineering, University of California, San Diego.

30. Valentin, G., Zuliani, M., Zilio, D., Lohman, G. and Skelly, A.. (2000). “DB2

Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes,” Proceedings of

International Conference on Data Engineering, San Diego, California, 101-110.

31. Value Based Management.net (2005). “What is Value Based Management”.

Retrieved September 5, 2005, from http://www.valuebasedmanagement.net.

32. Walsh, W. E., Tesauro, G., Kephart, J. O., and Das, R. (2004). “Utility functions in

autonomic systems.” Proceedings of the International Conference on Autonomic

Computing, 70-77.

www.manaraa.com

80

33. Ward, D. & Rivani, E. (2005). “An Overview of Strategy Development Models and

the Ward-Rivani Model”. Retrieved September 5, 2005, from

http://ideas.repec.org/p/wpa/wuwpgt/0506002.html.

34. Weikum, G., Mönkeberg, A., Hasse, C., & Zabback, P. (2002). “Self-tuning

Database Technology and Information Services: from Wishful Thinking to Viable

Engineering”. Proceedings of the 2002 International Conference on Very Large

Databases.

35. Wellman, M. P. (1996). “Market-oriented programming: some early lessons”.

Market-Based Control: A Paradigm for Distributed Resource Allocation, Scott

Clearwater, World Scientific, River Edge, New Jersey.

36. Xu, X., Martin, P., and Powley, W. (2002). “Configuring buffer pools in DB2 UDB”,

Proceedings of Center of Advanced Studies Conference (CASCON). Toronto, Ontario,

Canada.

www.manaraa.com

81

Appendix A

TPC-C Benchmark

The workloads used in this research are based on the TPC-C benchmark

developed by the Transaction Performance Council (TCP). The TPC-C benchmark is

used to test the performance of transaction processing systems. It is an online transaction

processing (OLTP) benchmark that models an order-entry system.

The TPC-C benchmark is based on an actual business model, that of a wholesale

parts supplier. It represents a business that maintains a number of warehouses associated

with sales districts. Each warehouse serves ten sales districts and each sales district

serves three thousand customers. The benchmark emulates operators in sales districts

selecting one of five transactions.

The benchmark utilizes multiple types of transactions to represent typical order-

entry behaviours such as entering orders, recording payments, and monitoring stock

levels. The most common transaction is entering a new order. Similarly, recording

payments for these transactions is also very common. The other transactions represented

involve checking order status, recording order delivery, and checking warehouse stock

level. The ratios of these transactions are shown in Figure A.1.

www.manaraa.com

82

Order Status
4%

Delivery
4%

Stock Level
4%

New Order
45%

Payment
43%

Figure A.1: The percentage frequency of the different transactions in the TPC-C workload.

The database used by the model contains nine relations as shown in Figure A.2.

As mentioned, each warehouse serves 10 districts with each district serving 3000

customers. Additionally, each warehouse maintains stock for 100,000 items. The stock

for each item at all warehouses is recorded in the Stock relation.

www.manaraa.com

83

Figure A.2: Database schema for TPC-C benchmark

The Order relation records all orders while the New_Order relation maintains a

list of pending orders with the Order_Line relation containing a list of the items for each

order. Finally, the History relation keeps records of payments for orders.

The five different transactions function as follows:

• New Order: places an order for, on average, 10 items. The transaction inserts a

record in the Order and Order_Line relations and updates the corresponding stock

level.

• Payment: updates the Customer relation with new balance and records payment in

the History relation.

100K W

1+ 0-1

Warehouse
W

Stock
W*100k

Item
100k(fixed)

District
W*10

Customer
W*30k

History
W*30k+

Order
W*30k+

Order_Line
W*300k+

New_Order
W*5k

10

3K

1+ 10-15

www.manaraa.com

84

• Delivery: processes a batch of 10 orders from the New_Order relation, removes

them from New_Order and updates the Order relation and Customer relation to

indicate the delivery.

• Order Status: checks the current status of a customer’s order.

• Stock Level: Checks warehouses for possible supply shortages.

www.manaraa.com

85

Appendix B

TPC-C Transaction Query Details

This section presents the SQL queries issued by each of the TPC-C transactions.

Also presented are the DB2 Explain utility’s estimated I/O operations for each query as

used in the economic model simulation to estimate the amount of work for a given

workload class.

B.1 New Order

1. SELECT w_tax, c_discount, c_last, c_credit
 INTO :*s_W_TAX, :*s_C_DISCOUNT, :s_C_LAST, :s_C_CREDIT
 FROM warehouse, customer
 WHERE w_id = :*s_W_ID
 AND c_id = :*s_C_ID
 AND c_w_id = :*s_W_ID
 AND c_d_id = :*s_D_ID;
Estimated number of I/O Operations: 3

2. UPDATE district
 SET d_next_o_id = :d_next_o_id
 WHERE d_w_id = :*s_W_ID
 AND d_id = :*s_D_ID;
Estimated number of I/O Operations: 3

3. INSERT INTO orders
 VALUES (:*s_O_ID, :*s_C_ID, :*s_D_ID, :*s_W_ID, :*s_O_ENTRY_D_time,
 NULL, :*s_O_OL_CNT, :*s_all_local);
Estimated number of I/O Operations: 1

4. INSERT INTO new_order VALUES (:*s_O_ID, :*s_D_ID, :*s_W_ID);
Estimated number of I/O Operations: 1

5. SELECT i_price, i_name, i_data
 INTO :s_I_PRICE, :s_I_NAME, :i_data
 FROM item
 WHERE i_id = :s_OL_I_ID;

www.manaraa.com

86

Estimated number of I/O Operations: 3

6. SELECT s_quantity, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05,

s_dist_06, s_dist_07, s_dist_08, s_dist_09, s_dist_10, s_ytd, s_order_cnt,
s_remote_cnt, s_data

 INTO :s_S_QUANTITY, :dist_01, :dist_02, :dist_03, :dist_04, :dist_05,
 :dist_06, :dist_07, :dist_08, :dist_09, :dist_10, :s_ytd, :s_order_cnt,
 :s_remote_cnt, :s_data
 FROM stock
 WHERE s_w_id = :s_OL_SUPPLY_W_ID
 AND s_i_id = :s_OL_I_ID;
Estimated number of I/O Operations: 4

7. UPDATE stock
 SET s_quantity = :s_S_QUANTITY,

s_order_cnt = :s_order_cnt,
 s_ytd = :s_ytd,
 s_remote_cnt = :s_remote_cnt
 WHERE s_w_id = :s_OL_SUPPLY_W_ID AND s_i_id = :s_OL_I_ID;
Estimated number of I/O Operations: 5

8. INSERT INTO order_line

VALUES (:*s_O_ID, :*s_D_ID, :*s_W_ID, :i, :s_OL_I_ID,
:s_OL_SUPPLY_W_ID, NULL, :s_OL_QUANTITY,
:i_OL_AMOUNT, :d_data);

Estimated number of I/O Operations: 1

B.2 Payment

1. UPDATE customer
SET c_data1 = :data1,

 c_data2 = :data2
WHERE c_id = :*s_C_ID

AND c_w_id = :*s_W_ID
AND c_d_id = :*s_D_ID;

Estimated number of I/O Operations: 5

2. SELECT w_street_1, w_street_2, w_city, w_state, w_zip, w_name, w_ytd
 INTO :s_W_STREET_1, :s_W_STREET_2, :s_W_CITY, :s_W_STATE,

:s_W_ZIP, :w_name, :w_ytd
FROM warehouse WHERE w_id = :*s_W_ID;

Estimated number of I/O Operations: 2

3. SELECT d_street_1, d_street_2, d_city, d_state, d_zip, d_name, d_ytd

INTO :s_D_STREET_1, :s_D_STREET_2, :s_D_CITY, :s_D_STATE,

www.manaraa.com

87

:s_D_ZIP, :d_name, :d_ytd
FROM district WHERE d_id = :*s_D_ID AND d_w_id = :*s_C_W_ID;

Estimated number of I/O Operations: 2

4. INSERT INTO history

VALUES (:*s_C_ID, :*s_C_D_ID, :*s_C_W_ID, :*s_D_ID, :*s_W_ID,
:*s_H_DATE_time, :*s_H_AMOUNT, :hist_data);

Estimated number of I/O Operations: 1

B.3 Delivery

1. SELECT MIN(no_o_id)
INTO :o_id :o_id_i

 FROM new_order
 WHERE no_w_id = :*s_W_ID
 AND no_d_id = :district;
Estimated number of I/O Operations: 6

2. DELETE FROM new_order

WHERE no_w_id = :*s_W_ID
 AND no_d_id = :district
 AND no_o_id = :o_id;
Estimated number of I/O Operations: 4

3. UPDATE orders

SET o_carrier_id = :*s_O_CARRIER_ID
 WHERE o_id = :o_id
 AND o_w_id = :*s_W_ID
 AND o_d_id = :district;
Estimated number of I/O Operations: 4

4. SELECT SUM(ol_amount)

INTO :ol_amounts
 FROM order_line
 WHERE ol_w_id = :*s_W_ID
 AND ol_d_id = :district
 AND ol_o_id = :o_id;
Estimated number of I/O Operations: 3

5. UPDATE ORDER_LINE

SET ol_delivery_d = :deliveryDate
 WHERE ol_w_id = :*s_W_ID
 AND ol_d_id = :district
 AND ol_o_id = :o_id;
Estimated number of I/O Operations: 14

www.manaraa.com

88

6. SELECT o_c_id, o_ol_cnt

INTO :c_id, :ol_cnt
 FROM orders
 WHERE o_id = :o_id
 AND o_w_id = :*s_W_ID
 AND o_d_id = :district;
Estimated number of I/O Operations: 3

7. SELECT c_balance, c_delivery_cnt

INTO :c_balance, :c_delivery_cnt
 FROM customer
 WHERE c_w_id = :*s_W_ID
 AND c_d_id = :district
 AND c_id = :c_id;
Estimated number of I/O Operations: 4

B.4 Order Status
1. SELECT c_first, c_middle, c_last, c_balance

INTO :s_C_FIRST, :s_C_MIDDLE, :s_C_LAST, :*s_C_BALANCE
 FROM customer
 WHERE c_id = :*s_C_ID
 AND c_w_id = :*s_W_ID
 AND c_d_id = :*s_D_ID;
Estimated number of I/O Operations: 4

B.5 Stock Level
1. SELECT d_next_o_id

INTO :d_next_o_id
 FROM district
 WHERE d_w_id = :*s_W_ID
 AND d_id = :*s_D_ID;
Estimated number of I/O Operations: 2

2. SELECT count(distinct S_I_ID)

INTO :*s_low_stock
 FROM order_line, stock
 WHERE ol_w_id = :*s_W_ID
 AND ol_d_id = :*s_D_ID
 AND ol_o_id < :max_o_id and ol_o_id > :min_o_id
 AND s_i_id = ol_i_id
 AND s_w_id = ol_w_id
 AND s_quantity < :*s_threshold;
Estimated number of I/O Operations: 141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

